AÇILI TÜRBÜLATÖRLE PÜRÜZLEND R LM K GEÇ L B R KANALIN ÜÇ BOYUTLU HAD NCELEMES

Bekir Berdan Aksoy¹ TUSA Motor Sanayi, Eski ehir Tolga Yasa² Anadolu Üniversitesi, Eski ehir

Sinan Eyi³ ODTÜ, Ankara

ÖZET

60° aç,l, türbülatörlerin bulundu u u-dönü lü bir iç kanal so utma modeline ait ak, alanlar, hesaplamal, ak, kanlar dinami i kullan,larak tahmin edilmeye çal, ,lm, t,r. Çal, malarda Reynold-Average-Navier-Stokes (RANS) denklemleri üç boyutlu model için farkl, türbülans modelleri kullan,larak çözülmü tür. Çözümlemeler Re=30000 ve Re=15000 olmak üzere iki farkl, ak, ko ulu için yap,lm, t,r. Çözümlemelerde elde edilen ,s, transferi performans, literatürden al,nan deneysel sonuçlar ile kar ,la t,r,lm, t,r. Yap,lan de erlendirmelere göre giri kanal, ve u-dönü bölgesinde k-e ve SST türbülans modellerinin genel olarak iyi performans gösterdi i belirlenmi tir. Kullan,lan modellerin hepsi dönü sonras,ndaki ak, ,n tahmininde ba ar,l, olamam, t,r. Ayr,ca türbülatör aras, ak, alanlar,nda say,sal modeller ak, ,n yüzeye yap, t, , ve tekrar geli ti i bölgeyi deneysel çal, maya göre daha önce olarak hesaplamaktad,r.

G R

Turbo makinelerde verim, yanma odas² ç²k² s²cakl² ² ile do ru orant⁴² olarak artmaktad⁴r. Türbinli motorlarda sabit kompresör bas²nç oran²nda türbine giren havan²n s²cakl² ²n²n yükseltilmesi gaz türbininin termal verimini artt²racakt²r [Diez, P.Q., Eslava, G.T., Francis, J.A., Martínez, F.R., Martínez, A.R. ve Velázquez M.T, 2011]. Ancak yüksek s²cakl²k, metallerin akma mukavemetini ve sürünme ömrünü dü ürür. S²cakl²k ve stres artt²kça sürünme gerilimi artar ve sonunda türbin palesinin kopmas²na sebep olur [Razak, A.M.Y., 2007]. Bu durum özellikle motorun s²cak bölge parçalar²n²n ömürlerinin dü mesi aç²s²ndan kritiktir. So utmas²z pale sistemlerinde malzemenin izin verdi i en yüksek s²cakl²k 1250-1300 K iken, so utma sistemine sahip palelerde bu de er 1800K ve hatta, so utma sisteminin özelli ine göre, daha yüksek olabilmektedir [Dixon, S.L., 1998]. Yüksek s²cakl²k ve yüksek dönme h²zlar²nda çal² an türbin palelerinin yüksek gerilme streslerine dayanabilmeleri ve sürünme ömürlerinin uzun olabilmesi için metal s²cakl²klar²n²n belli bir seviyenin alt²nda tutulmas² gerekir. Bu sebepten dolay² gaz türbinli motorlar²n kritik parçalar²n²n

Türbin pale so utmas² çe itli ekillerde yap²maktad²r. Bunlar; film so utmas², jet çarpt²rma so utmas², ve iç kanal so utmas²d²r (ekil 1). Film so utmas²nda amaç; pale yüzeyindeki küçük deliklerden püskürtülen so uk havan²n palenin yüzeyinde ince bir tabaka olu turarak s²cak ak² havas² ile pale metaryali aras²nda izolasyon katman² olu turmakt²r. Bu katman ile pale yüksek ²s²lardan korunmaktad²r. Jet çarpma so utmas² ile so utulmas² istenen yüzey üzerine küçük hava jetleri gönderilir. Jetin yüzeye çarpt² ² bölgede hem türbülans seviyesinin yüksek olmas²ndan hem

¹Bekir Berdan Aksoy, TUSA Motor Sanayi, bekir.aksoy@tei.com.tr

² Yard. Doç. Dr. Tolga Yasa, Makine Müh. Böl., tyasa@anadolu.edu.tr

³ Doç. Dr.Sinan Eyi, Havac,l,k ve Uzay Müh. Böl., seyi@metu.edu.tr

de s²n²r tabaka kal²nl² ²n²n inceli i ile ²s² geçi i iyile tirilmi olur. ç kanal so utma yönteminde ise pale içine aç²lm² kanallardan so uk hava dola t²r²larak pale yüzeyinden so uk ak² kana ²s² geçi i sa lan²r. Bu yöntemde ²s² geçi performans²n² iyile tirmek için iç yüzeylere mekanik engeller yerle tirilir. Bu engeller hem iç kanalda geli en s²n²r tabakay² k²rarak s²n²r tabakan²n izolasyon özelli ini ortadan kald²r²r hem de toplam ²s² geçi yüzeyini büyüterek daha fazla ²s²n²n yüzeyden çekilmesine olanak verir. Ak² türbülatör denen bu engeller ile önce yüzeyden ayr²r, türbülatör arkas²nda ise tekrar yüzeye yap² maktad²r. Bu sebeple türbin pale iç kanal so utmas²nda türbülatörler tercih edilmektedir. Ak² türbülatörden geçtikten hemen sonra yüzeyden ayr²l²p akabinde tekrar yüzeye yap² maktad²r. Türbülatör yüksekli i, türbülatörler aras²ndaki mesafe ve türbülatörün ak² a göre konumu ²s² transferi katsay²s²n² etkileyen parametrelerdir. Türbülatörler ²s² transferine olumlu yönde etki ederlerken kanal içindeki ak² ²n bas²nc²na olumsuz etki etmektedir. Kanal boyunca ak² ²n bas²nc² türbülatörlerle etkile imi sebebiyle dü mektedir.

ekil 1: Türbin Palesi So utma Türleri

Gaz türbini motor tasar²m²nda türbülatörlü bir kanal için ak² ve ²s² transferi karakterleri hakk²nda detayl² bilgi çok önemlidir. Han and Park [Han, J. C. ve Park, J. S., 1988] 30°, 45°, 60° ve 90° türbülatör aç²lar²n²n ²s² transferi karakterleri üzerine deneysel çal² malar yapm² lard²r. Bonhoff [Bonhoff, B., Bolcs, A., Johnson, B.V., Leusch, J., Parneix, S. ve Schabacker, J., 1999] ve Schabacker [Boelcs, A., Johnson, B.V. ve Schabacker, J., 1999] 45° türbülatör aç²l kare kanallar²n ak² karakteri üzerine çal² m² lard²r. Ekkad ve Han źn [Ekkad, S.V. ve Han, J.C., 1997] geçici likit kristal tekni ini kullanarak yapt²klar² deneysel çal² malar², türbülatörlü ve türbülatörsüz iki geçi li kare kanallar için en detayl² s² transferi katsay²s² da ²l²m²n² sa lamaktad²r. Bu çal² malar gelecekteki nümerik çal² malar için bir te vik olu turmu tur ve ayn² zamanda yap²lan hesaplamalar²n do rulanmas²nda da kullan²lm² t²r.

Önceki hesaplamal² çal² malarda türbülatörlü iç kanal so utma analizleri genellikle iki boyutla s²n²rl²yd². Ancak son zamanlarda üç boyutlu çal² malar da ortaya ç²km² t²r. Prakash and Zerkle [Prakash, C. ve Zerkle, R., 1995] türbülatörlü dikdörtken kanalda, k-epsilon ve duvar fonksiyonunu birle tirerek türbülans² modelleyip, ak² ve ²s² transferi hesaplamalar² yapm² lard²r. Çal² malar²n²n sonunda daha iyi sonuçlar elde edibilmek için dü ük Reynold say²s² modelinin ve izotropik olmayan etkileri yakalayabilmek için <u>Reynold</u> stressqmodelinin gerekli oldu unu belirtmi lerdir. Stephens and Shih [Civinskas, K.C., Shih, T.I.P. ve Stephens, M.A., 1995] 5 adet e it aral²kl², 90° türbülatörlü tek geçi li dikdörtgen kanalda üç boyutlu ak² ve ²s² transferi üzerine çal² m² lard²r. Dü ük Reynold say²s²ndaki bir k-epsilon türbülans modelini kullanm² lard²r ve sonuçlar²n² Ekkad ve Han⁴n [Ekkad, S.V. ve Han, J.C., 1997] deneysel çal² mas² ile kar ³la t²rm² lard²r. Bu model ile türbülatörler aras²ndaki ²s² transferi katsay²s² testten daha dü ük tahmin edilebilmi tir. Bonhoff [Bonhoff, B., Jennions, I.,

Johnson, B.V. ve Tomm, U., 1997] Reynolds stressqmodeli kullanarak U dönü lü ve 45° türbülatör aç²l² kanallar için ²s² transferi hesaplamar²nda bulunmu tur.

Bu çal² malarda turbo makinelerde türbin so utmas²nda kullan⁴an türbülatör pürüzlü iç kanal so utmas² tasar²m²nda teste olan ba ²ml⁴² ² azaltarak üç boyutlu HAD analizleri ile iç kanal so utma verimlili inin do ru say²sal tahminin yap⁴mas² amaçlanm² t²r.

YÖNTEM

Test Modeli ve Sayïsal Yöntem

Çal² mada Chandra ve ekibinin [Chandra, P.R., Han, J.C. ve Lau, S.C., 1988] deneysel olarak çal² t²klar² bir serpantin iç so utma kanal² kullan³m² t²r. Modelleme esnas³nda tünel giri inde ve ç²k² ²nda hidrolik çap³n iki kat² kadar bir bölge ak² ²n geli mesi için düz kanal olarak b²rak³lm² t²r. Bu bölgeden sonra türbülatörler referans yay²na uygun olarak yerle tirilmi tir(ekil 2). Model olu turulurken hesaplama süresinden avantaj sa lamak ad²na kanal²n yüksekli in yar²s² göz önünde bulundurulmu tur.

ekil 2: Analiz Modeli

Kanal geometrisinin a yap²s² ±CEM CFDqyaz²l²m² kullan²larak olu turulmu tur. A geometrileri yap²land²r³m² a biçiminde olu turulmu tur. Analizlerde, ²s² transfer performans²n²n ölçülmesinde kritik bölgeler olan türbülatörler aras² ve U dönü geometrilerinin a hücre say²s² di er bölgelere göre daha s²k tutulmu tur (ekil 3). A geometrisi tek parçadan olu mu olup giri ve ç²k² s²n²rlar² aras²nda herhangi bir kar² ma yüzeyi bulunmamaktad²r. A geometrisi iki de i ik kalitede olu turulmu tur. A a ba ²ml²k incelenebilmesi için 4 milyon elemanl² ve 7 milyon elemanl² a olu turulmu tur. ki a yap²s² ile elde edilen sonuçlar ekil-4qde kar ²la t²r²m² ve 4 milyon elemana sahip a yap²s² ile devam edilmesi kararla t²r²m² t²r. Is² transferi problemi s²n²r tabakan²n iyi çözülmesini gerektirdi inden, olu turulan bütün çözüm a lar² için ±/+qde eri 1qen küçük olmas² amaçlanarak duvar kenar²ndaki a kal²nl² ² 7x10⁻³ mm olacak ekilde belirlenmi tir.

ekil 3: Çözüm a ² yap²s² a)Türbülatörler aras² ve b) U-dönü a yap²s²

ekil 4: k-epsilon türbülans modeli a eleman say²s² sonuç kar ²la t²rmas² (Türbülatör Aç²s²: 60°, Re:30000)

<u>Üç boyutlu HAD analizleri</u>: Geometrilerin HAD analizleri ANSYS-FLUENT yaz⁴²m² kullan⁴arak gerçekle tirilmi tir. Analizler sabit durumda RANS (reynolds-averaged Navier Stokes) modeli ile ±upwindqçözüm modelinde ikinci dereceden ve hücre esasl² olarak gerçekle tirilmi tir. Çözümlerde bas²nç ve h²z ba lant⁴²d²r.

Analizler 15000 ve 30000¢ Reynold say³ar² için gerçekle tirilmi tir. Modele giri s²n²r ko ulu olarak tüm alanda e it atmosferik bas²nç ve 300K s²cakl²k de eri verilmi tir. Ç²k² s²n²r ko u ise bas²nç olarak belirlenmi tir. Ç²k² bas²nc² hedef Re de eri tutturulacak ekilde ayarlanm² t²r. Yan ve orta duvarlara adyabatik s²n²r ko ulu uygulanm² t²r. Türbülatörlerin bulundu u duvara ise (giri ve dönü bölgeleri dahil) 400W/m² ²s² ak²s² s²n²r ko ul olarak uygulanm² t²r. Türbülatörlerin kar ²s²ndaki duvarda ise simetri s²n²r ko u kullan²lm² t²r. Türbülans modeli olarak dört farkl² türbülans modeli (k-epsilon, k-omega, Reynolds Stress Modelq ve Shear Stress Transporto, uygulanm² ve performanslar² de erlendirilmi tir. Analizlerin yak²nsama kriteri olarak ²s²t³an yüzeylerde hesaplat³an Nusselt say²s²n²n alan a ²t¹2kl² ortalamas²n²n de i imi kullan³m² t²r. Buna göre 1000 öteleme ara ile al²nan 100¢r Nusselt say²s² ortalamalar² fark² 0.1%¢den küçük ise analiz yak²nsam² kabul edilmi tir.

SONUÇLAR

Analizler sonucunda elde edilen datalar ANSYS-FLUENT yaz⁴²m² kullan⁴arak i lenmi tir. Test düzene inin so utma performans² normalize edilmi Sherwood say²s² ile verilmi tir. Sherwood say²s² ayn² zamanda kütle transferi Nusselt say²s² olarak da dü ünülebilir. Çal² man²n sonucunda

elde edilen normalize Nusselt say²s² test sonucunda elde edilmi olan normalize Sherwood say²s² ile kar ²la t²r²lm² t²r.

$$Sh = \frac{h_m D_h}{\nu/Sc} \qquad \qquad Nu = \frac{h D_h}{k}$$

Analizler sonucunda dört farkl² türbülans modeli ile 60⁰ türbülatör aç⁴ar² için 15000 ve 30000 Reynolds say⁴ar²nda sonuçlar elde edilmi tir. Sonuçlar üç ana bölümde incelenebilir. Birinci bölüm türbülatörlü giri kanal², ikinci bölüm U dönü ve üçüncü bölüm türbülatörlü ç²k² kanal²d²r.

Türbülatör aç²s²n²n 60° oldu u ve ak² ²n 30000 Re say²s²na sahip oldu u durumda farkl² türbülans modelleri ile yap⁴an cözümlere ait sonuclar ekil-5 de deneysel veriler ile kar ⁴a t²r⁴m² t²r. Is² transferi performans de erlerinin kar ²la t²r²ld² ² bölgeye ait z yönlü girdap yap²s² yine ekil-5øde giri kanal² için verilmi tir. Görüldü ü gibi ak² 4. türbülatöre kadar geli mekte sonras²nda ise periyodik bir karakter kazanmaktad²r. Deneysel çal² madaki türbülatör say²s² analiz modelinde göz önüne al²nandan çok oldu u için ilk türbülatör bölgelerinde ak² deneysel çal² man²n benzer bölgeleri ile 5. Ve 6. türübülatör aras² ise deneysel çal² man²n tam geli mi bölgesi ile kar 4a t4r4m² t4r. Is² transferi performans verileri kanal geni li inin ortas²ndan gecen hat boyunca hesaplanarak grafik olu turulmu tur. RSM d² ²ndaki modeller ile elde edilen ²s² transferi performans da ⁴²m² ak² kan²n girdi i ilk düz kanal ve u-dönü bölgesi için deneysel olarak elde edilen veriler ile uyumlu oldu u görülmü tür. Da ⁴²m her ne kadar uyumlu olsa da say²sal çal² ma ile elde edilen sonuçlar deneysel çal² madan oldukça dü üktür. Bu iki bölge için de deneysel sonuclara en yak²n de erler k-e modeli ile elde edilmi tir. U-dönü sonras²ndaki bölümde ise RSM modelinin sonuclar² di er modeller ile elde edilen sonuclardan ciddi olarak ayr²maktad²r. RSM d² ²ndaki modellerde ise ²s² transferi performans² önce ani bir art² göstermekte sonras²nda ise art² taki ivme azalmakta ve en üst de erine ula t²ktan sonra aniden tekrar dü mektedir. Deneysel çal² mada ise ²s² transferi performans²n²n art² bölgesi farkl² olarak gözlenmi tir. Ayr²ca deneysel çal² malarda en üst performans de erine say²sal çal² malara göre daha önce ula maktad²r. Ik iki bölgede oldu u gibi deneysel çal² malara en yak²n de erler bu bölgede de k-e modeli ile elde edilmi tir. Avr2ca denevsel cal2 ma da 2s2 transferi performans2 dönü ten sonra her türbülatör bölgesinde dü erek devam ederken say2sal çal2 malarda 2s2 transferi performans2 ilk türbülatör bölgesinden sonra artmaktad²r. Sonuçlar²n kanal orta çizgisi boyunca ald² ² dü ünüldü ünde bu fark²n bu çizgi ile kesi en ak² yap²lar²n²n do ru çözülememesinden kaynakland² ² dü ünülmektedir. Daha sa I²kl² bir kar ²la t²rma için ortalama ²s² transfer performans² de erine bak²mas² gerekmektedir. Lakin deneysel çal² mada ölçüm noktalar²n²n sadece belli bölgelere verle tirilmesinden dolav² ortalama ²s² transfer performans²n²n belirlenmesi mümkün de ildir.

ekil 5: Kanal Ortas²ndan Al²nan Sonuçlar (Türbülatör Aç²s²: 60°, Re:30000)

5 Ulusal Havac²k ve Uzay Konferans² kinci çal² mada kanal içindeki h²z Re 15000 olacak ekilde ayarlanm² t²r. Benzer ekilde analiz sonuçlar² de erlendirilmi ve ekil-6qde sunulmu tur. Re say²s² dü ürüldü ünde RSM modelinin ba ar²s² giri kanal² ve u-dönü bölgesinde ciddi ekilde artm² t²r. Fakat dönü sonras²ndaki ak² ²n tahmininde RSM modeli yine ba ar²s²z olmu tur. Re=15000 için k-e modeli türbülatör bölgelerinde ba ar²l² olurken U-dönü bölgesinde SST türbülans modeli deneysel sonuçlara yak²n de erler vermi tir. U-dönü öncesindeki bölümde bütün modeller deneysel sonuçlardan yüksek ²s² transferi performans de erleri göstermektedir. Yine u-dönü sonras²ndaki kanalda ise analiz sonuçlar² beklenen de erleri ve da ³²mlar² yakalamada ba ar²l² olamamaktad²r.

ekil 6: Kanal Ortas²ndan Al²nan Sonuçlar (Türbülatör Aç²s²: 60°, Re:15000)

Türbülatörlerin ak² a 60°**q**ik aç² ile yerle tirilmesinden dolay² bu tip kanallarda ak² üç boyutlu olarak gerçekle mektedir. Bu sebeple kanal ortas²ndan geçen çizgideki performans ile beraber alt yüzeydeki performans da ³²m²na da bak³mal²d²r. ekil-7**q**e her iki Reynolds say²s² için alt yüzeydeki ²s² transferi performans² da ³²m² verilmi tir. Ak² kanala girdikten sonra dördüncü türbülatöre kadar geli mektedir. Sonras²ndaki iki bölgede ise birbirine yak²n sonuçlar al²nd² ²ndan periyodik bir karakter yakaland² ² söylenilebilir. Is² transferi performans² birinci kanal²n d² ⁴ndan periyodik bir karakter yakaland² ² söylenilebilir. Is² transferi performans² birinci kanal²n d² duvarlar²na yak²n bölgelerde kanal ortas²ndaki de erlerin üstünde görülmektedir. Bunun sebebi ak² ²n öncelikle türbülatörlerin d² duvara yak²n k²s²mlar² ile kar ³la mas²d²r. Bu bölgede türbülatör arkas²nda bir girdap bölgesi olu turur. Olu an girdap bölgedeki türbülatörü a an ak² kan türbülatör arkas²nda bir girdap bölgesi olu turur. Olu an girdap bölgedeki türbülatörün üstünden gelen ak² ile de etkile ime girmektedir. Ak² ²n bu karma ²k yap²s² ve kanal orta bölgesindeki ²s² transferi performans do ru ilerlerken, türbülatörün üstünden gelen ak² ile de etkile ime girmektedir. Ak² ²n bu karma ²k yap²s² ve kanal orta bölgesindeki ²s² transferi performans de erlerin alt²nda ç²kmas² say²sal analiz çal² malar²nda bu bölgede gerçekle en ak² ²n do ru hesaplanamad² ²n² dü ündürmektedir.

ekil 7: 60° türbülatörlü kanal için alt yüzeydeki 2s² transferi performans² da 212m²

60° türbülatör aç²s² ve 15000 ve 30000 Re say²slar²na sahip ak² ²n oldu u durumlarda da k-e türbülans modeli ile yap³an çözümde kanal d² duvar²na yak²n hatta ait sonuçlar ekil-8qde deneysel veriler ile kar ³la t²r²lm² t²r. 5 ve 6. türbülatörlerden sonra analiz ²s² transferi performans² en yüksek seviyeye deneysel sonuçlardan daha önce ula m² t²r ancak yine de deneysel sonuçlar²n alt²nda kalm² t²r. Analiz ²s² transfer performans² sonuçlar² türbülatörlere çok yak²n mesafelere kadar al²nabildi i için deneysel sonuçlarda görünemeyen türbülatör öncesi ²s² transfer performans² ani art² lar² kaydedilebilmi tir. U-dönü sonras² 15000 Re say²s² için olan analiz sonuçlar² ba larda deneysel sonuçlara yakla m² t²r ama sonras²nda analiz ve deneysel ²s² transfer performans sonuçlar² birbirlerinden ayr²lm² t²r. 30000 Re say²l² ak² ²n ²s² transfer performans² analiz sonuçlar² deneysel sonuçlara çok yak²n olmasa da benzer da ³l²m göstermi tir. U-dönü içinde analiz sonuçlar² ile deneysel sonuçlar aras²ndaki fark de i kendir. Yer yer analiz sonuçlar² ²s² transfer performans² daha dü ük seviyelerde kal²rken özellikle u-dönü ortas²ndan sonra deneysel sonuçlar daha dü ük seviyede kalmaktad²r. U-dönü ç²k² ²nda analiz sonuçlar² ²s² transfer performans² yine deneysel sonuçlar² n alt²nda kalm² t²r.

ekil 8: U-Kanal D² Duvara Yak²n Hattan Al²nan Sonuçlar (Türbülatör Aç²s²: 60°, Re:15000-30000)

Ak² ²n geli mi kabul edildi i 5. ve 6. türbülatör aral² ²ndaki ak² ile ilgili duvar kayma gerilmesi, zyönlü girdap yap²s² ve ²s² transferi performans² kanal orta düzlemi için ekil-9œ kar ²la t²r²lm² t²r. Kar ⁴a t²rmalar iç duvara yak²n hat, kanal ortas²ndan geçen hat ve d² duvara yak²n hat üzerinde yap²lm² t²r. Bu hatlar aras²ndaki mesafe kanal geni li inin %25 nispetindedir. Duvar kayma gerilmesinin s²⁴2r oldu u de erler ak² ²n yüzeye tutundu u bölgeleri göstermektedir. // Hebölgesi türbülatör arkas²ndaki ana girdap yap²s²n² temsil etmektedir. Girdap yap²s²n²n türbülans² artt²rmas² ve yüzey üzerindeki s²cak ak² kan² ana ak² a ta ²mas² sebebi ile bu bölgede 2s² transferi performans² artmaktad²r. Bu ana girdap yap²s² ayr²ca türbülatör ile alt yüzeyin birle ti i bölgede ters yönde dönen bir kö e girdap yap²s² da olu turmaktad²r. Bu bölge ise grafikte %4+ile gösterilmi tir. %2+bölgesi sonunda kayma gerilmesinin s²⁴²r oldu u nokta ak² kan²n yüzeye tekrar tutundu u ve iki türbülatör aras²nda s²n²r tabakan²n tekrar geli meye ba lad² ² noktay² göstermektedir. Bu noktadan sonra (% + bölgesi) ak² yönünde kayma gerilmesi sürekli olarak artmaktad²r. Bu durum geli en s²n²r tabakay² i aret eder. S²n²r tabaka geli tikce kal²nl² ² artmakta ve ²s² transfer performans² buna paralel olarak dü mektedir. ⁴D+bölgesine gelindi inde ise kayma gerilmesi dü meye ba lam² t²r. Bu durum ak² kan²n h²z²n²n x-yönünde azald² ²n², türbülatöre yakla an ak² ²n yön de i tirdi ini ve y-yönünde h²z kazanmaya ba lad² ²h² bu sebeple de yüzeyden ayr²ld² ²n² göstermektedir. Bu bölgede ak² yüzeyden ayr²ld² ² için ²s² transferi performans² bu bölgede daha h²zl² bir dü ü göstermi tir. Son olarak ⁴/₂₆+bölgesinde ise türbülatör aras²ndaki s²n²r tabakan²n duvara ula mas² ile olu an bir kö e girdab²ndan bahsedilebilir. Bu girdap %2+bölgesinden yükselen ak² ile alt duvara bask²anmakta ve kayma gerilmesinin tekrar yükselmesine sebep olmaktad²r. ^{(A+b}ölgesindeki girdap yap²s²nda oldu u gibi bu bölgede de türbülans²n artmas² sebebi ile ²s² transferi performans² yükselmektedir. Deneysel sonuçlarda en yüksek ²s² transferinin oldu u %2+bölgesinin ba lad² ² noktan²n x-yönünde daha ileride oldu u görülmektedir. Yine say²sal sonuçlar²n tersine deneysel çal² mada 1874+bölgesi içindeki s²n²r tabaka kal²nl² ²n²n daha yava artt² ² yüksek ²s² transferi performans²ndan anla ²lmaktad²r. Say²sal model

üzerinde bu bölgelerde iyile tirme yap²lmas²na ihtiyaç duyulmaktad²r. Bu bölgelerin karakterleri ve kaplad² ² alanlar d² duvardan iç duvara do ru gidildikçe de i mektedir. Say²sal analizler özellikle d² duvara yak²n bölgelerde zay²f sonuçlar vermektedir. bu bölgeler özellikle türbülatörleri a an ak² kan²n güçlü girdap olu turdu u bölgeleri temsil etmektedir. ç duvara do ru gidildikçe analiz sonuçlar² ile deneysel sonuçlar birbirine yakla maktad²r.

ekil 9: U-dönü öncesi iki türbülatörler aras² kanal ortas²ndaki duvar kayma gerilmesi, Z-girdap ve ²s² transferi performans² (Türbülatör Aç²s²: 60°, Re:30000 türbülans modeli: k-epsilon)

DE ERLEND RMELER

Yapan cal² mada 60° e imli türbülatörlerin kullan²ld² ² u-dönü lü bir so utma kanal²n²n içinde olu an ak² ve 2s² transferi performans² say2sal RANS cözümlemeleri ile tahmin edilmeye çal² ^alm² t²r. Yap⁴an analizlerde k-e, k-w, SST, RNG olmak üzere yaz⁴²m içinde kullan⁴abilecek dört türbülans modeli ile al?nan sonuclar deneysel sonuclar ile kar ²la t²r²m² t²r. Genel olarak de erlendirildi inde sav²sal analizler ile elde edilen ²s² transfer performans² denevsel de erlere göre daha dü ük seviyelerde kalm² t²r. Kullan²lan türbülans modelleri aras²nda en ba ar² sonuçlar k-e türbülans modeli kullan²ld² 2nda elde edilmi tir. Analizlerdeki 2s² transferi performans da ⁴2m²n²n daha çok giri tüneli ve u-dönü bölgesi için deneysel sonuçlara yak²n oldu u u-dönü sonras²nda ise bütün modellerin yanl² sonuç verdi i tespit edilmi ve bu bölge için özel çözümler gerekti i de erlendirilmi tir. U-dönü öncesi türübülatörler aras²ndaki bölüm detayl² olarak incelenmi ve bu bölgede ak² ²n yüzeve tutundu u noktan²n sav²sal analiz cal² malar²nda daha erken gercekle ti i gözlenmi tir. Is² transferi performans² de erleri ic duvara vak²n bölgelerde dü ük hatalar ile tahmin edilirken d² duvara gidildikce hata miktar²n²n artt² ² saptanm² t²r. Giri kanal² için ak², öncelikle d² duvara yak²n bölgeden türbülatörleri a makta ve türbülatörler aras² bölgeye girmektedir. Dolay²s²yla girdap yap²s²n²n kuvvetli oldu u d² duvara yak²n hat boyunca hatan²n yüksek olmas² bu girdap yap²s²n²n do ru tahmin edilemedi ini göstermektedir. bu girdap vap²s² ic duvara do ru hareket ederken iddetini vitirmekte ve sav²sal analiz sonuclar² ile denevsel sonuçlar birbirine yakla maktad²r.

Kaynaklar

Boelcs, A., Johnson, B.V. ve Schabacker, J., 1999, õPIV Investigation of the Flow Characteristics in an Internal Coolant Passage with 45deg Rib Arrangement, öASME, 99-GT-120

Bonhoff, B., Bolcs, A., Johnson, B.V., Leusch, J., Parneix, S. ve Schabacker, J., 1999, õ*Experimental and Numerical Study of Developed Flow and Heat Transfer in Coolant Channels with 45deg Ribs*, ö Int. J. Heat Fluid Flow, s. 3116319.

Bonhoff, B., Jennions, I., Johnson, B.V. ve Tomm, U., 1997, õ*Heat Transfer Predictions for Rotating U-Shaped Coolant Channels with Skewed Ribs and With Smooth Walls*,ö ASME, 97-GT-162.

Chandra, P.R., Han, J.C. ve Lau, S.C., 1988, õEffect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel, ö ASME, April, Vol. 110/233

Civinskas, K.C., Shih, T.I.P. ve Stephens, M.A., 1995, õComputation of Flow Heat Transfer in a Rectangular Channel with Ribs, ö AIAA, 95-0180.

Diez, P.Q., Eslava, G.T., Francis, J.A., Martínez, F.R., Martínez, A.R. ve Velázquez M.T, 2011, õEvaluation of the Gas Turbine Inlet Temperature with Relation to the Excess Air,+EPE, epe.2011.34063

Dixon, S.L., 1998, õ*Fluid Mechanics and Thermodynamics of Turbomachinery*, +Elsevier Butterworth-Heinemann, Cilt.1, s.121

Ekkad, S.V. ve Han, J.C., 1997, õDetailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators,ö Int. J. Heat Mass Transf., s. 252562537.

Han, J. C. ve Park, J. S., 1988, õ*Developing Heat Transfer in Rectangular Channel with Rib Turbulators*,ö Int. J. Heat Mass Transf., 31, No. 1, s. 1836195.

Prakash, C. ve Zerkle, R., 1995, õ*Prediction of Turbulent Flow and Heat Transfer in a Ribbed Rectangular Duct With and Without Rotation*,ö ASME J. Turbomach., 177, s. 2556264.

Razak, A.M.Y., 2007, õ*Industrial Gas Turbines*, +Woodhead Publishing in Mechanical Engineering, Cilt.1, s.129