YÜKSEK ÇÖZÜNÜRLÜKLÜ MİKRO UYDU KAVRAMSAL MODELİ

Enes Beşli¹ Hatice Merve Cirtil² Bahadır Erdenk³ Kuzey Farfuroğlu⁴ Mert Kaya⁵ Mehmet Fatih Engin⁶

Nevsan Şengil⁷ Tahsin Çağrı Şişman⁸

ÖZET

Günümüzde 0,5 m çözünürlüğe sahip elektro-optik yer gözlem uydular genellikle 500 kg'ın üzerinde bir kütleye sahip olmaktadır. Bu büyük uydu kütlesinden dolay da fırlatma maliyetleri artmaktadır. Ancak son yıllarda uydu teknolojilerinde meydana gelen gelişmeler neticesinde BlackSky, SkySat gibi çok yüksek çözünürlüklü ve daha düşük kütleli uydular n üretimine yönelik cabalar hız kazanmaktır. Böylelikle çok daha düşük kütleli uydular ile yüksek çözünürlüklü uydu görevleri geliştirmek mümkün olabilmektedir. Bu makalede, bu güncel teknolojik eğilimler doğrultusunda 0,5 m çözünürlükte Dünya'nın herhangi bir yerinden görüntü alabilen, 100 kg alt kütleye sahip en az üç yıl görev ömrü olan bir mikro uydu kavramsal analizi sunulmaktadır.

¹ Öğrenci, Uzay Müh. Böl., E-posta: enes.besli@stu.thk.edu.tr

² Öğrenci, Uzay Müh. Böl., E-posta: hatice.merve.cirtil@stu.thk.edu.tr

³ Öğrenci, Uzay Müh. Böl., E-posta: bahadir.erdenk@stu.thk.edu.tr

⁴ Öğrenci, Uzay Müh. Böl., E-posta: kusai.farfour@stu.thk.edu.tr

⁵ Öğrenci, Uzay Müh. Böl., E-posta: s150222055@stu.thk.edu.tr

⁶ Öğretim Görevlisi, Uzay Müh. Böl., E-posta: mfengin@gmail.com

⁷ Prof. Dr., Uzay Müh. Böl., E-posta: nsengil@thk.edu.tr

⁸ Doç. Dr., Uzay Müh. Böl., E-posta: tcsisman@thk.edu.tr

Giriş

Mikro Uydular, toplam kütleleri 10-100 kg arasında değişen uydulardır. Mikro Uydular daha büyük kütleli uydularla kıyaslandığında; üretim sürelerinin kısa olması, fırlatma ve üretim maliyetlerinin düşük olması ile ön plana çıkmaktadırlar. Geçtiğimiz yıllara nazaran uzay sektöründe yaşanan son gelişmeler neticesinde mikro uydular büyük kütleli uyduların performanslarına yaklaşmakta ve 1 metreden daha az çözünürlükte görüntüler elde edebilecek kabiliyete erişebilmektedirler. Bu sebeple çok yüksek çözünürlüklü ve daha düşük kütleli uyduların üretimine yönelik çabalar hız kazanmıştır. Bu uydulara örnek olarak BlackSky (Uydu Ağırlığı 55 - 65 kg, çözünürlüğü 1m - 0,75m) [Nasini ve Oddone, 2018], SkySat (Uydu Ağırlığı 83 kg, çözünürlüğü 0,72m) [Planet Labs Inc., 2018] gösterilebilir. Ancak daha yüksek, 0,5 metre ve üzeri çözünürlükteki görüntüler, hali hazırda Pleiades [Delrieu, Lamard, Cheroutre, Bailly, Dhuicq ve Puig, 2008], WorldView-3 [Maxar, 2019] gibi büyük kütleli (İng. Small Satellite, >1000 kg) veya Küçük Uydu (İng. Small Satellite, >500 kg) elektro-optik uydular ile elde edilebilmektedir. Bunun en önemli sebeplerinden bir tanesi elektro-optik görev yükünün, yörüngeye bağlı olarak büyük boyutlarda ve dolayısıyla ağır olmasıdır. Mikro Uydular büyük ve ağır görev yüklerini taşıyamamaları sebebiyle büyük kütleli uyduların 0,5 metre çözünürlük kabiliyetine henüz erişememektedirler. Bu makalede mevcut teknolojiler, yerli ve milli imkanlar göz önüne alınarak daha küçük ve hafif görev yükleri kullanılarak; 0,5 metre çözünürlükte görüntü alabilen bir sistem mimarisinin kavramsal analizi sunulmaktadır. Sistemin Dünya'nın herhangi bir yerinden görüntü alabilen, 100 kg altı kütleye sahip ve en az üç yıl görev ömrü olan bir uydu ve yer istasyonundan oluşması planlanmıştır. Bu kapsamda yüksek çözünürlüklü Mikro Uydu görev yükü gereksinimleri, yörünge analizleri ve platformun sahip olacağı alt sistemlere yönelik analizler sunulmaktadır.

YÖNTEM

Mikro Uydu'nun kavramsal analizi yapılır iken aşağıdaki temel gereksinimler dikkate alınmıştır.

No	Gereksinim		
1	Uydu Fırlatma Ağırlığı	:	100 Kg
2	Yer Örnekleme Mesafesi (YÖM)	:	0,5 metre
3	Uydu Görev Ömrü	:	3 yıl
4	Görüntü Coğrafi Konum Doğruluğu	:	< 10 m
5	Çekilen görüntülerin yer istasyonuna indirme süresi	:	~8 dakika

Tablo 1 Mikro Uydu Temel Gereksinimleri

Mikro Uydu iki ana kesimden oluşmaktadır. Bunlar uzay kesimi ve yer kesimidir. Uzay kesimi Görev Yükü ile birlikte İtki Alt Sistemi, Yörünge Yönelim Belirleme Alt Sistemi, Haberleşme Alt Sistemi, Güç Alt Sistemi, Yapısal Alt Sistemi, Veri Kotarma Alt Sistemi ve Termal Kontrol Alt Sistemi olmak üzere toplam 7 alt sistemden oluşmaktadır. Veri Kotarma Alt Sistemi, Termal kontrol Alt Sistemi ve yapısal Alt Sistemi makalenin konusu itibariyle yer almamaktadır. Mikro Uydu sistem mimarisi aşağıdaki şekildedir.

Şekil 1 Mikro Uydu Sistem Mimarisi

Mikro Uydu hedeflenen kütle bütçesi dağılımı aşağıdaki tabloda verildiği şekilde hedeflenmiştir [Larson ve Wertz, 2005].

Kesim	Alt Sistem	Kütle (kg)
	Görev Yükü	45
	İtki Alt Sistemi	10
	Haberleşme Alt Sistemi	5
	Yapısal Alt Sistemi	15
Mikro-Uydu	Termal Kontrol Alt Sistemi	2
	Güç Alt Sistemi	13
	Yönelim Belirleme ve Kontrol Alt Sistemi	8
	Veri Kotarma Alt Sistemi	2
	Toplam	100

Görev Yükü

Uydu görüntülerinin teknik özellikleri belirtilir iken iki farklı çözünürlük terimi kullanılmaktadır. Bu terimler Yer Örnekleme Mesafesi (YÖM) (İng. Ground Sampling Distance GSD) [Jacobsen, 2005] ve Yersel Ayırma Mesafesi (YAM) terimleridir. Bu terimleri Elektro-optik görev yükünün dedektör benek boyutu, ayna çapı gibi parametreleri etkilemektedir. YÖM,

$$Y \ddot{O} M = \frac{H}{fP}$$
 (1)

formülünden bulunmaktadır. Burada H yörünge yüksekliği, P benek (İng. Pixel Size) aralığı ve f odak uzaklığını ifade etmektedir. YAM ise

$$YAM = 1,22\frac{\lambda H}{D}$$
 (2)

Burada bir üstteki denklemden farklı olarak D ayna çapını ve λ ışığın dalga boyunu ifade etmektedir. 0,5 metre çözünürlük hedefi bu formüllerden yola çıkarak hedef yörünge yüksekliğine bağlı olarak sunulmaktadır. Yörünge ile ilgili analizler yörünge bölümünde ele alınmıştır. Yörünge yüksekliğine bağlı olarak ayna çapı, dedektör boyu, benek aralığı, odak uzaklığı ve diğer elektro-optik görev yüküne ait teknik parametreler hesaplanmıştır. 0,5 m çözünürlüğü elde etmek için ilk olarak 300 km yüksekliğinde bir yörünge yüksekliği seçilmiştir. Başlangıç optik parametrelerini hesaplamak için gereken yörünge parametreleri aşağıda verilmiştir:

Parametre	Sembol	Değer	Birim
Dünya Yer Çekimi Sabiti	μ	398600	km ³ /s ²
Dünya Yarıçapı	R	6378	km
Yörünge Yüksekliği (Uydu)	h	300	km
Yarı Büyük Ekseni (Uydu)	а	6678	km
Yörünge Periyodu (Uydu)	Т	90,5169	dk
Yörünge Hızı (Uydu)	V	7725,8351	m/s
Yer Takip Hızı (Uydu)	v_g	7378,7626	m/s

Tablo 3 Temel Yörünge Parametreleri

Görev yörüngesinin detaylı analizi Yörünge bölümünde verilmektedir.

Görev Yükü Gereksinimleri:

No	Görev Yükü Gereksinimleri	Sistem Gereksinim No
GY.1	Uydu Toplam ağırlığına bağlı olarak Görev Yükü toplam ağırlığı maksimum 45 kg olmalıdır.	1
GY.2	Görev yükü toplam uzunluğu maksimum 1,2 m olmalıdır.	
GY.3	Görev yükü, YÖM Değeri 0,5 m (PAN) olmalıdır.	
GY.4	Görev yükü, ana ayna çapı 35-40 cm olmalıdır.	2
GY.5	Görev yükü, 550 nm dalga boyunda çalışacaktır.	
GY.6	Görev yükü misyon hedefleri doğrultusunda dünya üzerinde istenilen alandan görüntü alabilecek özellikte olacaktır.	-
GY.7	Görev yükü doğrusal dizin tekniği (İng. Pushbroom) kullanarak çekim yapacaktır.	-

Kavramsal analiz yapılırken bu gereksinimler ve fonksiyonlar göz önüne alınmıştır.

Tarama Tekniği: Uydu 300 km yörünge yüksekliğinde ve ortalama 7,7 km/s yörünge hızına sahip olduğundan dolayı, beneklerin tarama tekniği önemlidir. Çünkü Görev Yükü görüntü alırken oluşacak bir gecikme görüntülerin bulanık çıkmasına sebep olacaktır. İstenilen alanın görüntüsünü çekmek için Doğrusal Dizin Tarayıcı (İng. Pushbroom Scanner) tekniği seçilmiştir. Doğrusal Dizin Tarayıcı tekniğinde, Görev Yükü içerisinde bir seri dedektör (CCD veya CMOS), görüntünün oluşturduğu odak düzleminde yer almaktadır. Spesifik olarak lens sistemi tarafından oluşturulan görüntü, uydunun uçuş yönünde, dedektörlerin tarama yüzeyi boyunca itilmektedir. Dedektör matrisi uydunun yörünge hareketi ile yer değiştirme (İng. Displacement) sırasında ayrı ayrı süpürme seklinde yerden yansıyan fotonları toplar ya da ölçer. Fotonların enerjisi tespit edildikten sonra uydu platformunda elektronik olarak örneklenir ve dijital olarak saklanır. Bu teknikte dedektörler her spektral bandı veya kanalı bağımsız ölçerek lineer olarak görüntünün oluşmasını sağlamaktadır. Bu bağlamda, lineer kalıplar normalde birden fazla uç uca konumlandırılmış CCD (İng. Charge-Coupled Device) sensörlerinden oluşur [Fajardo, 2019]. Görüntünün sinyal-gürültü oranını arttırmak için, kapsama alanı oranından taviz verilerek, doğrusal dizi görüntüleyicileri ya da bağlı oldukları uzay aracı, etkili durma süresini artırmak için uzay aracı altı noktanın Dünya yüzeyindeki hareketiyle telafisini sağlayabilir [Wertz, Everett ve Puschell, 2011]. Doğrusal dizi tetkiki için ana gereksinim, pozlama çizgisi bölge gözetleme hareketinin, bir ışığa duyarlı elemanın uçuş yönü boyunca olan alana projeksiyonundan daha az olmalıdır [Abolghasemi ve Abbasi-Moghadam, 2012].

Şekil 2 Doğrusal Dizin Tarama Konsepti [Topan ve Maktav, 2009]

<u>Teleskop Seçimi:</u> Farklı görevler ve işlevler için çeşitli teleskop tasarımları bulunmaktadır. Ağırlık limitlerinden dolayı, bu görev için en uygun teleskop tasarımı Cassegrain olarak belirlenmiştir. Cassegrain tipi teleskopta, ışık büyük olan ana aynadan yansır, sonrasında küçük olan ikinci aynadan yansıyarak ana aynadaki delikten geçer. Işığı bu şekilde katlayarak teleskobun boyutu küçültülebilmektedir ancak ışığı toplama kabiliyeti azalmaktadır. Işık ışını Cassegrain teleskobu içerisine girdiğinde, önce konkav ana aynadan yansıyıp, sonrasında ikincil aynadan yansır. Bu şekilde uzaktaki bir objenin görüntüsü oluşturulur. Bu konfigürasyon 2 aynalı RC Cassegrain Teleskobu olarak adlandırılacaktır [Beish, 2014].

<u>Dedektör Tanımı:</u> Görüntü dedektörü, resim oluşturmak için gereken bilgiyi belirleyen ve aktaran bir cihazdır. Bu işlem, ışık dalgalarının değişken zayıflamalarını kameranın lenslerinden yansırken, bilgi aktaran küçük akım dalgalanmaları olan sinyallere dönüştürerek yapılmaktadır [Lyon, 1981].

İki ana tip görüntü dedektörü vardır: Charge-Coupled Device (CCD) ve Complementary Metal Oxide Semiconductor (CMOS). CCD görüntü dedektörü, bir dizi kapasitörlere sahiptir ve her biri bir pikselin ışık yoğunluğuna eş elektrik yükü taşımaktadır. CMOS görüntü dedektörü bir fotodiyot ve her piksel için transistor anahtarı, piksel sinyallerinin ayrı ayrı güçlendirilmesini sağlamaktadır.

Uydunun yörüngesi 300 km'de olduğundan, yer takip hızı yüksek olmaktadır. Bu sebepten sektördeki CCD dedektörleri istenilen alanın görüntüsünü, gecikme olmadan çekecek kabiliyete sahip değildir. Buna ek olarak, CMOS dedektörleri, CCD dedektörlerine kıyasla düşük maliyetli, düşük güçte çalışabilen ve daha küçük odak düzlemi montajı (ODM) [(İng. focal plane assembly (FPA)] içinde kullanılabilmektedir. Aşağıdaki tabloda CCD ve CMOS dedektörleri arasındaki farklar verilmiştir.

Tanım	CCD	CMOS
Kamera Bileşenleri	Dedektör + Optik Destek Çipleri + Optikler	Dedektör + Optik: Destek Çipleri (Bazen)
Hız	Orta – Hızlı	Hızlı
Hassasiyet	Yüksek	Düşük
Gürültü	Düşük	Orta

Tablo 5 CCD & CMOS Karşılaştırma [Thusu, 2012]

Sistem Karmaşıklığı	Yüksek	Düşük
Dedektör Karmaşıklığı	Düşük	Yüksek
Doluluk Oranı	Yüksek	Düşük
Çip Çıkışı	Voltaj (analog)	Bitler (dijital)
Piksel Sinyali	Elektron	Voltaj
Düzgün Deklanşör (Örtücü)	Yüksek – Orta	Düşük

Elektro-Optik görev yükü yukarıda belirlenen gereksinimler ve parametreler baz alınarak kavramsal analizi yapılmıştır. Bunlara ek olarak teleskop tasarımı, tarama tekniği, dedektör tipi gibi faktörler görev gereksinimleri baz alınarak seçilmiştir. Bu kapsamda verilen özelliklere sahip bir elektro-optik kameranın tasarımı için analizler yapılmıştır. Bu hesaplamalar uygulama kısmında verilmiştir.

Uydu fırlatma ağırlığının maksimum 100 kg olması sebebiyle görev yükünün hafif olması hedeflenmiştir. YÖM değerinin nadirde 0,5 m olması ayna çapının boyutunu doğrudan etkilemektedir. YAM değeri yörünge yüksekliği ile ayna çapının bir birileri ile orantılı olduğunu göstermektedir. Bu nedenle hedeflenen çözünürlüğü elde etmek adına toplam ağırlığı da göz önüne alarak alçak yörüngede küçük ayna çaplı bir teknik çözüm üzerinde çalışılmıştır.

Yörünge

Hedeflenen YÖM değeri ve diğer görev gereksinimleri göz önüne alınarak yörünge gereksinimleri oluşturulmuş ve analizler bu gereksinimlere göre gerçekleştirilmiştir. YÖM değerine ulaşılabilmesi adına Görev Yükü bölümünde belirtildiği üzere 0,5 metre YÖM değerini sağlayacak şekilde yörünge irtifası 300 km olarak belirlenmiştir.

Ancak 300 km irtifasının koşulları sıkıdır. Bu da atmosfer yoğunluğundan dolayı kaynaklanmaktadır. 100 km daha yüksekteki atmosfer yoğunluğuna bakarak (yani 400 km) 300 km'nin koşulları ne kadar sıkı olduğu anlaşılmaktadır. 300 km irtifasında atmosfer yoğunluğu 10⁻¹¹ (kg/m³) mertebesinde iken 400 km irtifasında atmosfer yoğunluğu 10⁻¹² (kg/m³) mertebesindedir [Curtis, 2014]. Yani 300 km'ye bakıldığı zaman aradaki atmosfer yoğunluğunun farkı yaklaşık 10 kattır. Bu da aerodinamik sürtünmenin etkisini ciddi miktarda etkilemektedir. Oysa 300 km'de kalmak, Görev Yükü'nün performans kısıtlamasından kaynaklanmaktadır.

Yörünge Gereksinimleri:

No	Yörünge Ana Gereksinimleri	Sistem Gereksinim No
Y.1	Yörünge ömrü en az 3 yıl olmalıdır.	3
Y.2	Yörünge, görev yükünün 0,5 m çözünürlük elde etmesini sağlamalıdır.	2
Y.3	Yörünge, uydunun misyon merkezi olan Türk Hava Kurumu Üniversitesi üzerinden geçiş yapmasını sağlamalıdır.	-
Y.4	Yörünge, uydunun dünyanın herhangi bir yerinden görüntü alabilmesini sağlamalıdır.	-
Y.5	Yörünge irtifası 300 km olacaktır.	-

Tablo 6 Yörünge Ana Gereksinimleri

Yörünge değerleri hesaplanırken aşağıdaki parametreler kullanılmıştır:

Parametre	Değer	Birim
Dünyanın Yarıçapı (R)	6378	km
Dünya'nın Evrensel Yerçekimi Parametresi (µ)	398600,4	km³ / s²
Dışmerkezlik (e)	0,00000001	-
İrtifa (h)	300	km
Enberi (r _p)	6678	km
Enöte (r _a)	6678	km
J ₂ Pertürbasyonu	1082x10 ⁻⁶	-
Yerel Yıldız Zamanı	365,25	gün

Tablo	7 Yörünge	Analizinde	Kullanılan	Temel	Parametreler
	J				

Güneş Eş Zamanlı Yörünge:

Güneş Eş Zamanlı Yörünge (GEZY) düzleminin sürekli güneşi aynı açı ile görerek ilerlemesi olarak tanımlanabilir. Başka bir deyiş ile yörünge düzlemi ile Yer Güneş vektörünün ortalama sabit olması olarak da tanımlanabilir [Lewis, 2012].

 $\phi = a_s - \Omega = sabit$ (3)

a_s: Güneşin Sağaçıklığı Ω: Uydu'nun Sağaçıklığı Ø: a_sile Ω arasındaki fark

Açıklığı

Yörünge Parametreleri:

Mikro Uydu'nun Dünya'nın herhangi bir yerinden görüntü alabilmesi hedeflenmektedir. Bu sebeple Mikro Uydu'nun yörüngesi, Güneş Eş Zamanlı Yörünge olarak belirlenmiştir. Yörünge parametreleri aşağıdaki formüller kullanılarak hesaplanmıştır:

Yarı büyük eksen a = (r _p +r _a)/2	(4)
Ortalama hareket sabiti $n = \sqrt{\frac{\mu}{a^3}}$	(5)
Yörünge Periyodu: $T = 2\pi / n$	(6)

J2 pertürbasyon etkisinden faydalanarak, yörünge eğimi *(i),* yörüngeyi Güneş Eş Zamanlı oluşturacak şekilde tasarlanmıştır. Güneş Eş Zamanlı hedef olan yörüngeye göre, yörünge düzleminin Güneş'e göre Dünya ile aynı oranla değişmesi gerekmektedir.

Şekil 4 Yörünge Açıların Tanımı

Çıkış düğümünün Sağaçıklığı değişim oranı (d Ω /dt ya da $\dot{\Omega}$) ekteki şekilde olmaktadır:

$$\dot{\Omega} = \frac{2\pi}{\text{Yerel Yildiz Zamani (1 yillik)}}$$
(7)

Yukarıdaki hesaplanmış e, a, n ve $\dot{\Omega}$ değerlerini ekteki $\dot{\Omega}$ denkleminde (8) kullanarak eğim (*i*) hesaplanmıştır.:

$$\dot{\Omega} = -\frac{3}{2}(J2) n \frac{R^2}{a^2(1-e^2)^2} \cos(i)$$
(8)

Yörünge Eğimi,
$$i = \arccos\left(\frac{\dot{\Omega}}{-\frac{3}{2}(J^2)n\frac{R^2}{a^2(1-e^2)^2}}\right)$$
(9)

Aynı şekilde yukarıdaki hesaplanmış e, a, n değerlerini ekteki denklemde (10) kullanarak Enberi Değişim Oranı $\dot{\omega}$ hesaplanmıştır: Enberi açısı değişim oranı (d ω /dt ya da $\dot{\omega}$)

$$\dot{\omega} = \frac{3}{2} (J2) n \frac{R^2}{a^2 (1-e^2)^2} [4 - 5 \sin^2(i)]$$
(10)

<u>Fırlatıcılar</u>: Yörünge parametreleri belirlendikten sonra Mikro Uydu için İrtifa ve ağırlık mertebesi olarak uygun fırlatıcılar araştırılmıştır.

Fırlatıcı	GEZY için Maksimum İrtifa (km)	300 km GEZY İçin Maksimum Faydalı Yük Ağırlığı (kg)	İrtifa Hassasiyeti (+-km)	Eğim Hassasiyeti (+-derece)
Pegasus Rocket	760	250	10	0,15
Electron	700	168	15	0,15
Mikro Uydu Fırlatma Sistemi (MUFS) [Savunma Haber, 2019]	400	100	-	-

Tablo 8 Fırlatıcılar

<u>Delta V : A</u>tmosferik sürtünmeden dolayı oluşan irtifa düşüşleri ve eğiklik bozulması, fırlatıcının irtifa ve eğiklik toleransı ve görev esnasında yörüngedeki kalıntılar ve benzeri cisimlerden kaçınmak için çarpışmadan kaçınma manevraları hesaplanıp, hedeflenen 3 yıl görev ömrünü sağlamak için gerekli Delta-V hesaplamaları yapılmıştır. Kısaca toplam Delta-V dört farklı Delta V'den oluşmaktadır:

- 1. Aerodinamik sürtünmeden kaynaklanan irtifa düşüşünü telafisine göre ΔV_1
- 2. Yörünge düzleminin eğim değişikliği telafisine göre ΔV_2
- 3. Çarpışmadan kaçınma manevrasına göre ΔV_3
- 4. Fırlatıcıya göre ΔV₄

Başta bu hesaplamalarda kullanılacak ortak denklemler sunulmaktadır:

Yörünge Yarıçapı (km): r = R + h (11) Uydu hızı (km/s), V= $\sqrt{\frac{\mu}{a}}$ (Dairesel yörünge için) (12)

 ΔV_1 : Aerodinamik katsayısı C_d= 2,35, sürtünme kesit alanı A_c = 3,5 m² ve 1976 Standard Atmosferik Modeli kullanılarak aerodinamik sürtünmenin irtifa ve yörünge eğimi üzerindeki etkisi simülasyon programından ekteki şekilde alınmıştır:

Tablo 9 Aerodinamik Sürtünmenin İrtifa Ve Yörünge Eğimi Üzerindeki Etkisi

Zaman (UTCG)	Yarı büyük eksen (km)	Eğim (der)
4 Mar 2020 09:00:00	6678,137000	96,67652
4 Mar 2020 19:33:02	6676,776487	96,676423

Buna göre aşağıdaki denklemler kullanılmıştır:

İrtifa düşüşü Δh= h_i –h_f (13) ΔV= | V_i– V_f | (Elektrik itki sistemi için) (14) Ateşleme sayısı: Misyon ömrü/(Düşüş süresi + Ateşleme süresi) (15)

h_i: İlk irtifa h_f: Final irtifa V_i : İlk hız V_f : Final hız

Düşüş süresi Tablo 9'dan alınmıştır, ateşleme süresi ise İtki Alt Sistemi hesaplamalarından alınmıştır

 ΔV_2 : Yörünge düzleminin eğim bozulması telafisi için gereken ΔV ekteki şekilde hesaplanmıştır:

Şekil 5 Yörünge Düzlem Değişimi Yörünge düzlemi değiştirmek için gereken ΔV denklemi: $\Delta V = \sqrt{V_1^2 + V_2^2 - 2V_1V_2\cos(\Delta i)}$ (16)

 ΔV_3 : Görev esnasında yörüngedeki kalıntılar ve benzeri cisimlerden kaçınmak için yılda 4 kaçınma manevrası yapılacağı varsayılmıştır. Manevrada 0,5 km bir irtifa değişikliği yapılacaktır. ΔV_3 , Denklem 14 kullanarak hesaplanmıştır.

 ΔV_4 : Tablo 8'deki fırlatıcılar Mikro Uydu için İrtifa ve ağırlık mertebesi olarak uygun görülmüştür. Fırlatıcının yörüngeye yerleştirme hassasiyetine göre hem İrtifa hem de eğimdeki toleransları dikkate alınarak ΔV hesaplanmıştır. (Denklem 14 ve Denklem 16 kullanılmaktadır)

Son olarak, simülasyon programları kullanılarak Mikro Uydu'nun Misyon Operasyon Merkezi (MOM) olan Türk Hava Kurumu Üniversitesi ile en az üç yıl boyunca oluşturduğu Ortalama Tekrar Ziyaret (İng. Revisit Time) süresi ve haberleşme süreleri hesaplanmıştır. Detaylı sonuçlar Uygulama kısmında sunulmaktadır.

İtki Alt Sistemi

Alçak Dünya Yörüngesi'nde atmosferik sürtünme uyduların ömürlerinde önemli rol oynamaktadır. Atmosferik sürtünme uydunun yörüngesini düşürür ve görev ömrünü azaltır. Atmosferik sürtünmeden kaynaklı irtifa düşüşünü telafi etmek için itki alt sistemi kullanılmaktadır. Mikro Uydu itki alt sisteminin analizleri 3 yıllık görev ömrü için yörünge analizinden elde edilen Delta-V kullanılarak gerçekleştirilmiştir. Yüksek yakıt performansı, yüksek güvenlik faktörü ve sağladığı daha fazla özgül itki sebebiyle elektrik itki kullanılması planlanmıştır [Goebel ve Katz, 2008]. Elektrik itki motorları elektrik enerjisiyle iyonize olmuş yakıtı yüksek hızlara ivmelendirerek itki üretmektedirler [Goebel ve Katz, 2008].

İtki alt sisteminin tasarımı öncesinde yörünge irtifasının belli olmaması ve görev yükünün yörünge irtifası ile boyutlarının doğrudan ilişkili olması nedeniyle öncelikle hesaplamalarda 300 km ve 350 km yörünge irtifaları göz önüne alınmıştır. Yörünge irtifasının belirlenmesinden sonra ise hesaplamalar ve getiri-götürü analizleri 300 km yörünge irtifasına göre yapılmıştır. Delta-V'den yola çıkılarak belirlenen yörüngede uydunun görev ömrüne göre gereken yakıt miktarı, itki, yakıt tankı hacmi gibi itki alt sisteminin teknik özellikleri hesaplanmıştır.

İtki sistemlerinde, yörünge transferi gibi işlevlerin yerine getirilmesi birincil itki olarak, yörünge yönelim kontrolü ile ilişkili işlevlerin yerine getirilmesi ise ikincil itki olarak adlandırılır [Kawnine, 2011]. Bu çalışmada, itki sisteminin birincil itki amacıyla kullanılması planlanmıştır. Elektrik itki sistemi, Alçak Dünya Yörüngesi'nde (İng. LEO (Low-Earth Orbit)) atmosferik sürtünme nedeniyle oluşan irtifa düşmesini telafi edecektir. Atmosferik sürtünme Alçak Dünya Yörüngesi'nde meydana gelir. Dünya'ya yakın yörüngelerde seyreltik halde de olsa

hala atmosfer vardır. Atmosfer, sürtünmeye ve dolayısı ile yavaşlama ile zamanla uydunun sahip olduğu yörüngede düşüşe neden olur.

Elektrik itki elektrotermal, elektrostatik ve elektromanyetik olmak üzere üç ana kategoriye ayrılır. Bu çalışmada, iticilerin yüksek özgül itkiye sahip olması (İng. Specific Impulse (Isp)), sağladığı itki (İng. Thrust), uçuş geçmişi (İng. Flight Heritage) göz önünde bulundurularak İyon itici ve Hall (İng. Hall Effect Thruster) itici için analizler yapılmıştır.

Elektrik itkide, Kripton, Ksenon, İyot gibi elementler yakıt olarak kullanılır. Kripton, doğada Ksenon'dan daha fazla bulunduğu için daha ucuzdur. Bunun yanında, Ksenon, yüksek moleküler kütlesi, düşük iyonlaşma enerjisine sahipken, Kripton daha az moleküler kütleye ve daha yüksek iyonlaşma enerjisine sahiptir. Ksenon 131,3 atomik kütle birimine (akb) ve 12,1 elektron volt (eV) iyonlaşma enerjisine, Kripton 83,8 akb ve 14,0 eV iyonlaşma enerjisine sahiptir [Nakles, Hargus, Delgado ve Corey, 2011]. Kripton'un düşük moleküler kütlesi sebebiyle gerekli yakıt miktarı daha fazla olup, aynı zamanda yakıt tankı kütlesinin ve hacminin de daha fazla olması anlamına gelir. İyot yakıtı ise katı olarak depolandığı ve fırlatıldığı için, yoğunluğu yüksek basınçlı Ksenon'dan yaklaşık 3 kat daha fazladır ve uzay aracının yakıt tankları daha küçük olabilir [NASA, 2015]. Bunun yanında yeni gelişmekte olan bir teknolojidir. Bu yüzden yakıt olarak Ksenon kullanılması tercih edilmiştir. İtki alt sisteminde her ateşleme sonrası, yakıt kütlesi, yakıt tüketildikçe değişmekte ve böylece uydunun kütle merkezinin değişmesine neden olmaktadır. Bu durumda, değişen kütle merkezi uyduda hesaplanmayan bir moment oluşmaması ve uydunun yöneliminin bozulmaması için, tankın itme ekseni boyunca uzunlamasına kütle merkezini değiştirmeyecek şekilde tasarlanması gerekmektedir. Tasarım esnasında küre şeklindeki yakıt tankının yarıçapı kısıtlaması göz önünde bulundurulmuştur.

İtki Alt Sistemi Gereksinimleri:

No	İtki Alt Sistem Gereksinimleri	Sistem Gereksinim No
İAS. 1	Uydunun toplam ağırlığına bağlı olarak itki alt sistemi toplam kütlesi maksimum 10 kg olmalıdır.	1
İAS. 2	İtki alt sistemi, uyduyu en az 3 yıl boyunca hedeflenen yörüngede tutmak için gerekli itkiyi sağlamalıdır.	3
İAS. 3	Yakıt depolama ve kontrol birimi, itici için gerekli basınç ve akışı kontrol etmelidir.	-
İAS. 4	Ksenon yakıtı en az 289,74 K kritik sıcaklık ve 5838 kPa kritik basınçta süper kritik koşullar altında depolanmalıdır.	-
İAS. 5	Yakıt tankı titanyum, paslanmaz çelik, kompozit veya alaşım malzemelerden olmalıdır.	-

Tablo 10 İtki Alt Sistem Gereksinimleri

Ani bir manevrada (İng. Impulsive Maneuver), uzay aracının hız vektörünün değişimi, yani, hızın büyüklüğü veya yön değişikliği anlıktır. Hız değişimi çok kısa sürede, sıfır zamanda (İng. Zero Time), gerçekleşir. Bu manevrada, uzay aracının pozisyonunun sabit olduğu kabul edilir ve hız değişikliği dikkate alınır. Aslında bu, hareket denklemlerinin çözülmesinin gerekmediği bir idealizasyondur [Curtis, 2010]. Örneğin, kimyasal itki ani manevradır. Ani olmayan manevra, düşük itkide uzun bir süre boyunca gerçekleşir. Bu manevra için kullanılan başka bir terim ise sonlu yanmadır, "sonlu" daha uzun bir süre boyunca "sıfır olmayan" ı temsil eder. Elektrik itki sistemi ve sıvı çift terkipli yakıt (İng. Bipropellant) sistemi gibi düşük itmeler bu manevraya dâhildir. Bu manevralarda itme, sıfır değil, önemli bir süre boyunca gerçekleşir. Bu nedenle, hareket denklemi ihmal edilemez, itme hareket denklemlerine dâhil edilmelidir. Uzay aracına hız vektörü, v, yönünde itki, T, harici bir kuvvetin, F, eklenmesi, aşağıdaki nispi hareket denklemini verir [Curtis, 2010]. m uydunun kütlesini ve µ dünya için standart yerçekimi parametresini temsil etmektedir.

$$\ddot{r} = -\mu \frac{r}{r^3} + \frac{F}{m} ; \quad F = T \frac{v}{v} \quad \Rightarrow \qquad \ddot{r} = -\mu \frac{r}{r^3} + \frac{T}{m} \frac{v}{v}$$
(17)

Atmosferik sürtünmeden dolayı oluşan sürtünme kuvveti, uydunun hareket yönüne zıt yöndedir ve denklem 18'deki gibidir. D sürtünme kuvvetini, v_{rel} uzay aracının atmosfere göre hızını temsil etmektedir. \hat{v}_{rel} ise nispi hız vektörü yönündeki birim vektördür.

$$\hat{\boldsymbol{v}}_{rel} = \frac{\boldsymbol{v}_{rel}}{\boldsymbol{v}_{rel}} \Rightarrow \boldsymbol{D} = -D\hat{\boldsymbol{v}}_{rel} \quad (18)$$

Uydunun atmosfere göre hızı denklem 19'daki gibidir. v_{atm} uydunun bulunduğu o noktadaki atmosferin hızını temsil etmektedir.

$$v_{rel} = v - v_{atm} \tag{19}$$

Atmosferik hız denklemi denklem 20'deki gibidir. Atmosfer Dünya ile döner ve w_E Dünya'nın açısal hızını temsil eder. r ise uydunun pozisyon vektörüdür.

$$\boldsymbol{v_{atm}} = \boldsymbol{w_E} \times \boldsymbol{r} \tag{20}$$

Böylece, uydunun atmosfere göre hızı denklem 21'deki gibidir.

$$v_{rel} = v - w_E \times r \qquad (21)$$

Sürtünme kuvvetinin büyüklüğü denklem 22'deki gibi ifade edilir. ρ atmosfer yoğunluğunu, A uydunun yüzey alanını (uydunun nispi hız vektörüne dik olan alanı), C_d ise sürükleme katsayısını temsil etmektedir.

$$D = \frac{1}{2}\rho v_{rel}^2 C_d A \qquad (22)$$

Atmosferik sürtünmeden kaynaklı bozulmanın ivmesi, atmosferik sürtünmeden dolayı oluşan sürtünme kuvvetinin, uzay aracının kütlesine bölümüyle elde edilir ve denklem 23'teki gibidir.

$$\boldsymbol{p} = \frac{\boldsymbol{p}}{m} \tag{23}$$

Böylece atmosferik sürtünmeden kaynaklı bozulmanın ivmesi denklem 24'teki gibidir.

$$\boldsymbol{p} = -\frac{1}{2}\rho v_{rel} \left(\frac{C_d A}{m}\right) \boldsymbol{v_{rel}} \qquad (24)$$

Denklem 17'ye atmosferik sürtünmeden kaynaklı ivmenin eklenmesiyle denklem 25 elde edilir.

$$\ddot{\boldsymbol{r}} = -\mu \frac{r}{r^3} + \frac{T}{m} \frac{v}{v} + \boldsymbol{p}$$
(25)

İtici ateşlendikçe uzay aracının kütlesi azalır çünkü itkiyi sağlayan itici yakıt uzaya boşaltılır. Kütle akış hızı (*ṁ*), saniyede uzaya püskürtülen yakıt kütlesidir ve denklem 26'dan hesaplanmıştır. En yaygın birimler, iyon iticiler için dakikada standart santimetreküp (dssk)(İng. Standard Cubic Centimetres Per Minute (sccm)) ve Hall iticiler için "mg/sn"dir [Goebel ve Katz, 2008]. Bununla birlikte, bu çalışmadaki hesaplamalar yapılırken "mg/sn" ile çalışılmıştır.

$$\dot{m} = \frac{T}{I_{sp}g_0} \qquad (26)$$

Burada, itkinin birimi "kN" cinsinden kullanılmıştır. I_{sp}, bir iticinin yakıtı ne kadar etkili kullandığının bir ölçüsüdür ve birimi "sn"dir. Aynı koşullar altında, I_{sp} arttıkça gerekli yakıt kütlesi azalır. I_{sp}, elektrik itki için, kimyasal itkiden daha yüksektir. Bu yüzden elektrik itki de kimyasal itkiden daha az yakıt harcanır. Bu, elektrik itkinin avantajlarından biridir. g₀, deniz seviyesindeki yerçekimi ivmesidir ve hesaplamalarda 0,0098 "km/sn²" olarak kullanılmıştır. Düşen irtifadan gerekli irtifaya çıkmak için geçen süre, t, denklem 17'den bazı türevlerle elde edilir. Zamanın biri "sn" dir, ve denklem 27'den hesaplanmıştır.

$$t = \frac{m_0 g_0 I_{sp}}{T} \left[1 - e^{\frac{1}{I_{sp} g_0} \left(\sqrt{\frac{\mu}{r_s}} - \sqrt{\frac{\mu}{r_0}} \right)} \right]$$
(27)

Burada, m₀ uzay aracının yörüngeye bırakıldığındaki kütlesidir ve birimi "kg"dır. r₀ uydunun başlangıç yörüngesi, r_s ise uydunun irtifa düşmesi sonucu son yörüngesidir ve birimleri "km" dir. m_p, iki yörünge arasındaki mesafeyi telafi etmek için bir kerelik ateşleme sırasında tüketilen yakıt miktarıdır. Birimi "kg"dır ve denklem 28 ile hesaplanmıştır.

$$m_p = \frac{Tt}{I_{sp}g_0} \qquad (28)$$

Birden fazla iticinin kullanıldığı durumlarda toplam I_{sp} denklem 29'dan hesaplanmıştır.

$$I_{sp} = \frac{\sum_{i} T_{i}}{\sum_{i} \dot{m}_{i}} = \frac{\sum_{i} T_{i}}{\sum_{i} \frac{T_{i}}{T_{sp_{i}}}}$$
(29)

Bir yıldaki ateşleme sayısı denklem 30 ile hesaplanmıştır. 365,2425, bir yıldaki gün sayısını ve 24 ise bir gün içindeki saati temsil eder. "as", iticinin bir yıldaki ateşleme sayısıdır ve birimsizdir, dt, saniye cinsinden bir kerelik irtifa düşme süresidir. Bir seferdeki irtifa düşüş süresi verileri simülasyon analizlerinden alınmıştır. Uydunun irtifa düşüş süresi ve gerekli irtifaya çıkış süresi kadar ateşleme yapılır. Bir yılda yapılan ateşleme sayısı, bir yıldaki saat sayısını, irtifa düşüş süresi ve irtifa çıkış sürelerinin toplamına bölümü ile elde edilir.

$$as = \frac{(365.2425)(24)}{dt+t}$$
(30)

Bir yıldaki tüketilen yakıt miktarı, m_{p, 1-yıl}, bir yıldaki ateşleme sayısının, bir kerede ateşleme ile tüketilen yakıt miktarı ile çarpılmasıyla elde edilir. Bir yıldaki ve üç yıldaki tüketilen yakıt miktarı denklem 31 ve 32'deki gibidir. Bu hesaplamaları yaparken as değeri kesirli bir değerse, ateşleme sayısı kesirli bir sayı olamayacağından bu değer tamsayıya yuvarlanır.

$$m_{p,1-y_{ll}} = (as)(m_p)$$
; $m_{p,3-y_{ll}} = 3(as)(m_p)$ (31 ve 32)

Görevin Delta-V'si km/s cinsinden aşağıdaki formülden hesaplanır:

$$Toplam \,\Delta V = 3(as) \left(\sqrt{\frac{\mu}{r}} - \sqrt{\frac{\mu}{r_0}} \right) \quad (33)$$

Tank hacmini ve kütlesini mümkün mertebe azaltmak için, yakıtın süper kritik koşullarda depolanması düşünülmüştür. LEO'da kara cisim denge sıcaklığı (İng. Equilibrium Black Body Temperature) yaklaşık 315 K'dir ve uzay aracı ortam sıcaklığının (İng. Ambient Spacecraft Temperature) kötü şartlar düşünülerek 300 K civarında olacağı varsayılmalıdır [Welle, 2008]. Bu yüzden, takip eden analizlerde en kötü durumda olarak, 300 K ortam sıcaklığı olduğu varsayılmıştır. Asal gazlar için ideal gaz yasası (Ksenon, Kripton ve Argon vb.) çok yüksek sıcaklıklarda bozulmaya başlar ve ideal gaz denklemi 300 K'de bile kullanılamaz. Gaz sabiti, R, bu çalışmada 8,314472 "L.kPa / K.mol" cinsinden kullanılmıştır. T, tanktaki depolama sıcaklığını temsil eder ve 300 K'dir. T_e, kritik Ksenon sıcaklığıdır ve 289,74 K' dir; P_c ise kritik Ksenon basıncıdır ve 5838 kPa'dır. M moleküler ağırlıktır ve Ksenon için 131,29 "g/mol" dür. Redlich-Kwong parametreleri, gazın kritik sıcaklığına ve basıncına bağlı olan a ve b' dir, ve denklem 34 ve 35'ten hesaplanır [Welle, 2008].

$$a = \frac{R^2 T_c^{5/2}}{9(2^{\frac{1}{3}} - 1)P_c}$$
; $b = \frac{(2^{1/3} - 1)RT_c}{3P_c}$ (34 ve 35)

Ksenon, ρ_p , yoğunluğu R, T ve M'ye bağlıdır ve denklem 36'dan hesaplanır. Hesaplamalar sonucunda elde edilen yoğunluk birimi "g/L" cinsindendir.

$$\rho_p = \frac{\sqrt{(4RT^{3/2}bM^2a)} - RT^{3/2}bM - aM}{RT^{3/2}b^2 - ab}$$
(36)

Kritik noktadaki basınç ve yoğunluk arasındaki ilişki, deneysel verilere çok iyi uyan denklemlerden biri olan Redlich-Kwong denklemi ile modellenmiştir [Welle, 2008]. ρ_p yoğunluğundaki Ksenon yakıtının tanktaki basıncı Redlich-Kwong denklemi (Denklem 37) ile hesaplanmıştır. Hesaplamalar sonucunda elde edilen basıncın birimi "kPa" cinsindendir.

$$P = \frac{RT\rho_p}{M - b\rho_p} - \frac{a\rho_p^2}{M(M + b\rho_p)\sqrt{T}}$$
(37)

Güvenlik faktörü, β , 2 olarak alınmıştır. Yakıt depolama tankının malzeme seçimi için, hem uydularda kullanılan tankların hem de ticari kullanıma hazır tankların veri kağıtları incelenmiştir. Tank, titanyum veya paslanmaz çelik gibi ksenon ile reaksiyona girmeyen bir malzemeden yapılmalıdır. Bu yüzden, ksenon depolama tankı için sık kullanılan malzemelerden biri olan Titanyum Ti-6Al-4V malzemesi seçilmiştir. Titanyum Ti-6Al-4V malzemesinin akma dayanımı, σ_y , 950 MPa ve yoğunluğu, ρ_t , 4430 "g/L"dir. Tankın kütlesi, m_t, denklem 38 ile hesaplanır ve bu hesaplamalar sonucunda kütlenin birimi "g" cinsinden elde edilir.

$$m_t = \frac{3m_p P \beta \rho_t}{2\sigma_y \rho_p} \tag{38}$$

Depolama tankının hacmi ise denklem 39'dan hesaplanmıştır ve birimi "L" dir.

$$V = \frac{2m_t \sigma_y}{3P\beta\rho_t} \tag{39}$$

Daha sonra, küre şeklindeki tankın iç yüzeyinin yarıçapı, r, hesaplanmıştır. Bunun için ilk olarak hesaplanan hacim litreden metreküp haline dönüştürülmüştür ve daha sonra kürenin yarıçap formülü olan denklem 40 uygulanmıştır. Bunun sonucunda elde edilen yarıçap "m" cinsindendir.

$$r = \left(\frac{3V}{4\pi}\right)^{1/3} \tag{40}$$

Son olarak ise, tankın kalınlığı, t, denklem 41'den hesaplanmıştır. Bu, tankın gerekli basıncı güvenli bir şekilde tutabileceği minimum duvar kalınlığıdır ve "m" cinsindendir.

$$t = \frac{Pr\beta}{2\sigma_y} \tag{41}$$

Bu denklemler kullanılarak Mikro Uydu'nun irtifa düşüşlerini telafi etmek için gerekli yörünge düzeltme süresi, ateşleme sayısı, yakıt miktarı, tank kütlesi, tank hacmi, tank yarıçapı ve tank kalınlığı üzerine hesaplamalar ve analizler yapılmıştır.

Yönelim Belirleme ve Kontrol Alt Sistemi (YBKS)

Uydunun konum doğruluğu, çekilen görüntünün coğrafi lokasyon doğruluğunu (İng. Geolocation Accuracy) doğrudan etkilemektedir [Purdy, Gaiser, Poe, Uliana, Meissner ve Wentz, 2006]. Bu bölümde, Mikro Uydu'nun çektiği 0,5 metre çözünürlükteki görüntülerin 10 metre coğrafi konum doğruluğuna ulaşmak amacıyla konum doğruluğu bütçesi ve hesaplanmaları sunulmaktadır. Yüksek konum doğruluğunu sağlamak ve kütlenin azaltılması amacıyla dönü ölçersiz [Serraano, Mora, Sarti, Marcille ve Cope, 1997] (İng.Gyroless) konsept kullanılmıştır. Bu konseptte Mikro Uydu'da yıldız izler ve Küresel Konumlama Sistemi (KKS) alıcıları konum ve yönelim kontrolü için kullanılmaktadır. Konum doğruluğunun Mikro Uydu üzerindeki etkileri analiz edilerek sunulmaktadır.

YBKS Gereksinimleri:

No	YBKS Alt Sistem Gereksinimleri	Sistem Gereksinim No
YBKS.1	Uydu toplam ağırlığına bağlı olarak YBKS'nin toplam ağırlığı azami 8 kg olmalıdır.	1
YBKS.2	YBKS 0,1°'den daha hassas bir işaretleme doğruluğuna sahip olmalıdır.	-
YBKS.3	Görüntü Coğrafi Konum Doğruluğu 10 m'den küçük olmalıdır.	4
YBKS.4	YBKS doğrusal dizin tekniğinin hatasız çalışabilmesi için Mikro Uydu'nun yavaşlatma manevrasına sahip olacak şekilde tasarlanmalıdır.	-
YBKS.5	YBKS, uzay etkilerinden oluşabilecek pertürbasyonları karşılayabilecek şekilde tasarlanmalıdır.	-
YBKS.6	YBKS'nin elektrik güç tüketimi 100 Watt'ı geçmemelidir.	-

Tablo 11	YBKS	Alt Sistem	Gereksinimleri
	10100		

YBKS kavramsal tasarımı yapılır iken tepki tekeri yapılandırmaları incelenmiş, çeviklik hesaplamaları yapılmış, ağırlığın azaltılması maksadıyla dönü ölçersiz YBKS çalışılmış ve hata kaynakları ile beraber Coğrafi Konum Doğruluğu Bütçesi ile birlikte rafta hazır ekipmanların seçimi gerçekleştirilerek kavramsal analiz yapılmıştır.

Tepki Tekeri Yapılandırması: Tepki tekerleri yapılandırmaları için 2 farklı yapılandırma modeli incelenmiştir. Tetrahedral yapılandırma, tepki tekeri yapılandırmasının kullanılmasının, sistem performansları açısından güç verimliliği ve ayrıca eyleyici (İng. actuator) arızası durumunda kontrol operasyonunun kararlılığını ve devamlılığının koruması için kullanılmaktadır [Kök, 2012]. Bu sebeplerden dolayı, uydu içerisine tetrahedral olarak isimlendirilen yapılandırma ile yerleştirilmesi planlanmıştır.

Tetrahedral yapılandırmasının diğer bir avantajı ise tepki tekerlerinin konum geometrisinden kaynaklı olarak tepki tekerleri bir eksende, tek bir tekerin sağlayabileceği torkun iki katı kadar daha fazla tork sağlamaktadır [Karatas, 2006]. Bu yapılandırmadaki diğer bir avantaj ise, toplam momentumun tüm eksenlerde sıfır olmasıdır. [Schoonwinkel, 2007]

Şekil 6 Tepki Tekerleri için Örnek Tetrahedral Yapılandırma

Şekil 6'da referans düzlemi ile tepki tekerleri arasındaki açılar gösterilmiştir. Tetrahedral referans düzlemi ile Mikro Uydu'nun dikey referans çerçevesi ile bunların aralarındaki açıları kullanarak tetrahedral referans düzleminden Mikro Uydu düzlemine bir dönüşüm matrisi tanımlanmaktadır.

$$\begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix} = \begin{bmatrix} 0 & \cos\gamma & -\cos\gamma\sin\eta & -\cos\gamma\sin\eta \\ 1 & \sin\gamma & \sin\gamma & \sin\gamma \\ 0 & 0 & \cos\gamma\cos\eta & -\cos\gamma\sin\eta \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix}$$
(42)

- h : Momentum
- η : Mikro Uydu z ekseniyle tepki tekerlerinin yaptığı açı
- γ : Mikro Uydu x ekseniyle tepki tekerlerinin yaptığı açı

Şekil 4 Tepki Tekerleri için Örnek Piramit Yapılandırma

Eylemsizlik Matrisi: Atalet momenti dönen bir cismin dönüşüne olan direncidir. Denklem 43-48 kullanılarak atalet matrisi hesaplanmaktadır. [Hibbeler, 2016]

$I_{xx} = \int (y^2 + z^2) dm$	(43)	$I_{xy} = -\int xy dm = -I_{yx}$ (46)
$I_{yy} = \int (z^2 + x^2) dm$	(44)	$I_{xz} = -\int xz dm = -I_{zx} $ (47)
$I_{zz} = \int (x^2 + y^2) dm$	(45)	$I_{yz} = -\int yz dm = -I_{zy}$ (48)

Bu denklemler kullanılarak Mikro Uydu'nun çevikliği, diğer bir deyişle görüntü çekimi esnasında tepki tekerleri ile oluşturulan momente karşılık uydunun dönüş hızı hesaplanmıştır. Hesaplamalara başlanırken Mikro Uydu bir dikdörtgenler prizması olarak modellenmiş ve üç kenar uzunluğu, kütle, ağırlık merkezi ve dış yüzey malzemeleri tanımlanmıştır. **Pertürbasyonlar:** Uzayda uydunun yönelimini ve kontrolünü bozacak çok fazla etken vardır. Bunlar yer çekimi gradyanı (yer çekimi değişimi), Güneş basıncı, atmosferik sürtünme ve Dünya'nın manyetik alanıdır. Aslında, optimum tasarım konsepti ile yer çekimi gradyanı ve atmosferik sürtünme birbirini etkisiz hale getirebilir. Ancak analiz sürecinde, en kötü senaryo göz önünde bulundurularak, tüm etkiler dikkate alınmış ve tepki tekerleri bu en kötü senaryoya en uygun olacak şekilde seçilmiştir. Ayrıca yörünge irtifasının bu pertürbasyonlar üzerindeki etkisini görmek için 300 km ve 350 km'de ayrı ayrı incelenmiştir. Pertürbasyon denklemleri Denklem 49-56'da gösterilmiştir.

$$T_g = \frac{3\mu}{2R^3} |I_z - I_y| \sin(2\theta) \qquad (49) \qquad h_g = T_g \rho\left(\frac{0.707}{4}\right) \tag{53}$$

$$T_s = \frac{F_s}{c} A_s (1+q) cosl$$
 (50) $h_s = \frac{T_s \rho}{2} \left(\frac{0.707}{4}\right)$ (54)

$$T_a = 0.5(\rho C_d A_r V^2)(c_{pa} - c_g) \quad (51) \qquad h_a = T_a \rho \left(\frac{0.707}{4}\right) \quad (55)$$

$$T_m = DB$$
 (52) $h_m = T_m \rho \left(\frac{0.707}{4}\right)$ (56)

- T_g : Azami yer çekimi gradyanından kaynaklanan tork
- T_s : Güneş basıncından kaynaklanan tork
- T_a : Atmosferik sürtünmeden kaynaklanan tork
- T_m : Manyetik alandan kaynaklanan tork
- *h_g* : Yerçekimi gradyanından kaynaklanan momentum
- h_s : Güneş basıncından kaynaklanan momentum
- *h_a* : Atmosferik sürtünmeden kaynaklanan momentum
- h_m : Manyetik alandan kaynaklanan momentum
- μ : Dünyanın yerçekimi sabiti
- *R* : Yörünge yarıçapı
- *I* : Atalet momentleri
- θ : Z ekseninin yerel dikeyden azami sapması
- ρ : Atmosfer yoğunluğu
- *F_s* : Güneş sabiti
- A_s : Yüzey alanı
- c : İşik hizi
- q : Yansıtma faktörü
- *l* : Güneşin geliş açısı
- *C_d* : Sürükleme katsayısı
- A_r : Sürükleme yüzey alanı
- *V* : Uzay aracının hızı
- *c*_{pa} : Güneş basıncı merkezi
- c_g : Ağırlık merkezi
- D : Aracın artık dipolü
- *B* : Dünyanın yörünge manyetik alanı

Çeviklik: YBKS gereksinimlerinde bir diğeri ise + veya – yalpalanma (İng. Roll) esnasında 3°/s (Derece/saniye) 'lik bir çevikliğe sahip olmasıdır. Kısıtlı sürede, sınırlı kütle ve güç isterleri göz önüne alınarak efektif ve çevik bir YBKS tasarımı hedeflenmiştir. Çeviklik tepki tekerleri ile sağlanmaktadır. Aşağıdaki formülle, tepki tekerlerinin Mikro Uydu'yu yalpalama, sapma ve yunuslama (İng. Roll, Yaw, Pitch) için gereken tork değerleri teorik olarak hesaplanmıştır.

$$T = 4\theta \frac{I}{t^2} \quad (57)$$

- T : Tork
- t : Zaman
- θ : Dönme Açısı (İng. Slew Angle)
- *I* : Atalet Momenti

Denklem 57'nin çözümlenmesi ile Denklem 58 aşağıdaki gibi elde edilir.

$$t = \sqrt{4\theta \frac{I}{2T}} \qquad (58)$$

Bir sayısal hesaplama ortamı kullanılarak, Denklem 58'de bulunan sonuç, analitik olarak da aşağıdaki algoritma ile hesaplanmasını gösterir.

- Tepki tekeri torku, dönme açısı (θ), momentum parametreleri, eylemsizlik matrisi ve bunların başlangıç değerleri girilir.
- Tepki tekeri yapılandırması belirtilir.
- Mikro Uydu'nun, istenilen dönme açısına ulaştıktan sonra hareketi olup olmayacağı belirtilir.
- $w = w + \alpha * t$ ve $\theta = \theta + (w * t/2)$ formülleri kullanılarak, öncelikle 0'dan θ / 2 dereceye kadar olan süre hesaplanır.
- $\theta/2$ 'den θ dereceye kadar olan kısım için $w = w \alpha * t$ ve $\theta = \theta + (w * t/2)$ formülleri kullanılarak uyunun istenilen, noktaya döndüğünde tamamen durmuş olduğu zamana kadar ne kadar geçtiği süre hesaplanır.

Dönü Ölçersiz YBKS: Yıldız izler tabanlı Kalman filtresinin sağladığı düzeltmelerin, sistem ölçüm ve parametre bilgisi hata kaynaklarına karşı sağlam hale getirmektedir. Bu yönelim belirleme konsepti, özellikle hassas dahili sensörler bulunduran ve uzay aracı parametrelerini, harici tork modellemesini çıkarmak ve uygulanmasını sağlamak için tasarlanmış bir uzay aracı için idealdir [Palermo, 2002].

Coğrafi Konum Doğruluğu Bütçesi: Mikro Uydu'nun, temel gereksinimlerinden olan Coğrafi Konum Doğruluğu hesaplamaları Denklem 59-71 kullanılarak yapılmıştır. Coğrafi Konum hatası, dünya üzerinde bakılmak istenilen konum ile o an bakılan konumun arasındaki hata olarak değerlendirilir. İşaretleme hatası ise, uydunun görüntüleme doğrultusunda nereyi gösterdiğidir [Wertz, Everett ve Puschell, 2011]. Tablo 12'de, haritalama hatası ve işaretleme hatası ile ilgili denklemler gösterilmiştir. Ayrıca hangi hatanın neyi temsil ettiği de açıklanmıştır.

Hata Kaynağı	Hata Büyüklüğü (Birim)	Coğrafi Konum Hatası	İşaretleme Hatası	Hata Yönü
		Yönelim Ha	ataları	
Azimut	$\Delta \phi$ (rad)	ΔφDsin η (59)	$\Delta\phisin\eta$ (60)	Azimutal
Nadir Açısı	$\Delta\eta$ (rad)	$\Delta \mu D/sin \ \epsilon$ (61)	Δμ (62)	Nadire Doğru
		Konum Ha	taları	·
Paralel-İz	$\Delta l(km)$	$\Delta l \left(\frac{R_T}{R_S}\right) \cos H$ (63)	$\left(\frac{\Delta l}{D}\right) sin Y_l$ (64)	Zemin İzine Paralel
Çapraz-İz	$\Delta C(km)$	$\Delta C\left(\frac{R_T}{R_S}\right) \cos G $ (65)	$\left(\frac{\Delta C}{D}\right) \sin Y_C$ (66)	Zemin İzine Dik
Radyal	ΔR_s (km)	$\Delta R_S \frac{\sin\eta}{\sin\epsilon}$ (67)	$\left(\frac{\Delta R_S}{D}\right) \sin \eta$ (68)	Nadire Doğru
	- 	Diğer Hat	alar	·
Hedef Yüksekliği	ΔR_T (km)	$\Delta R_T/tan \epsilon$ (69)	-	Nadire Doğru
Uzay Aracı Saati	ΔT (sn)	ΔTV_e cos lat (70)	$\Delta T(\frac{V_e}{D}) \cos(lat) \sin J$ (71)	Dünya Ekvatoruna Paralel

Tablo 12 Coğrafi Konum Doğruluğu Bütçesi Denklemleri

 Δl : Mikro Uydu'nun hız vektörü boyunca yer değiştirme

 ΔC : Mikro Uydu'nun yörünge düzlemine dik yer değiştirme

 ΔR_s : Dünya'nın merkezine doğru yer değiştirme (nadir)

- $\Delta \eta$: Nadirden algılama eksenine açı hatası
- $\Delta \phi$: Algılama ekseninin nadir etrafında dönmesindeki hata
- ΔR_T : Gözlenen nesnenin yüksekliğindeki belirsizlik
- ΔT : Gerçek gözlem süresindeki belirsizlik
- η : Yükseklik açısı
- *D* : Uydu Hedef mesafe
- ϵ : Hedeften görülen uydunun yükseklik açısı
- Ve : Ekvatorda Dünya dönüş hızı
- *lat* : Hedef enlem
- ϕ : Yer izine göre hedef azimut
- λ : Hedeften uyduya dünyanın merkez açısı
- ϕ_E : Doğu'ya göre azimut açısı
- *H* : $\sin H = \sin \lambda \sin \phi$
- $G \quad : \quad \sin G = \sin \lambda \, \cos \phi$
- Y_l : $\cos Y_l = \cos \phi \sin \eta$
- Y_C : $\cos Y_c = \sin \phi \sin \eta$
- J : $\cos J = \cos \phi_E \sin \epsilon$

Haberleşme Alt Sistemi

Tasarlanan bir uydunun gerekli verileri yer istasyonuna güvenli bir şekilde iletebilmesi çok önemlidir. Bağlantı hesaplamalarının neden olduğu bir hata nedeniyle seçilebilen yanlış ekipman uydunun kaybolmasına neden olabilir. Bu nedenle, uydunun gerekli bağlantı hesaplamaları yapılırken, en kötü koşullar dikkate alınmalı ve ekipman bu koşullara göre seçilmelidir. Genel olarak, uydu haberleşme sistemi uzay ve yer kesimi olarak ikiye ayrılır, daha sonra bu iki kesim arasında kurulacak bağlantının gerekli hesaplamaları yapılır ve ekipmanlar buna göre seçilir ya da tasarlanarak üretilir. Bağlantı verileri genel olarak uzkomut ve uzkomut olarak ikiye ayırılır.

Şekil 7 Aşağı Ve Yukarı Hattın Genel Gösterimi

Bağlantı bütçeleri hesaplanırken, aşağıdaki gereksinimleri karşılayacak şekilde hesaplanacaktır.

Haberleşme Alt Sistemi Gereksinimleri:

No	Haberleşme Gereksinimleri	Sistem Gereksinim No
HAS. 1	Haberleşme alt sisteminin toplam ağırlığı 5 kg'yi geçmeyecektir.	-
HAS. 2	Görev yükünden elde edilen veriler, en kötü şartlarda bile 8 dakika içerisinde yer istasyonuna indirilmelidir.	-
HAS. 3	X bant için Bit Hata Oranı'nın (BER) değeri 2 x 10 ⁻⁵ 'den daha küçük olacaktır.	5
HAS. 4	S bant için Bit Hata oranının (BER) değeri 10 ⁻⁷ 'den daha küçük olacaktır.	5
HAS. 5	S bant için veri hızı 1 Mbps'ye kadar çıkacaktır.	5
HAS. 6	Minimum yükseklik açısı 10 derece olacaktır.	-
HAS. 7	Uydu 300 km yüksekliğinde, haberleşme yapabilecektir.	-
HAS .8	S bant 2200 MHz frekans bandı kullanılacaktır.	-
HAS. 9	X bant için 8250 MHz frekans bandı kullanılacaktır.	-

Tablo 13 Haberleşme Alt Sis	stemi Gereksinimleri
-----------------------------	----------------------

Haberleşme Alt Sistemi: Yer Uydu Hattı (Yukarı hat), Uydu Yer Hattı (Aşağı Hat) ve Faydalı Yük Hattı (Faydalı Yük İndirme) olmak üzere üç bölümde ele alınmaktadır. Yer Uydu Hattı (Yukarı Hat), uydunun davranışını belirleyecek olan komutları yer istasyonundan uyduya göndermek üzere kurulan bir bağlantıdır. Yer istasyonundan gönderilen komutlar uydunun davranışını belirleyebilir veya uydudaki bir yazılıma doğrudan müdahale edebilir.

Uydu Yer Hattı (Aşağı Hat) uydu sağlık veya ölçüm verilerini uydudan yer istasyonuna indiren bağlantıdır. Uydu ölçüm verileri ise, düşük dosya boyutuna sahip olmaları nedeni ile S bant kullanılarak yer istasyonuna indirilecektir.

Faydalı Yük Hattı (Faydalı Yük İndirme) Görev yükü verilerini yer istasyonuna indirmek üzere kurulan bağlantıdır. Görev yükü verileri büyük dosya boyutuna sahip olmaları nedeni ile X bant kullanılarak yer istasyonuna indirilecektir.

X bant, sahip olduğu dalga boyu nedeni ile ortam koşullarından S bandına göre daha çok etkilenir, ancak kazancı ve maliyeti S bandına göre daha yüksektir.

Haberleşme Alt Sistemi tasarımı yapılır iken yukarıda bahsedilen Yukarı hat, Aşağı hat ve Faydalı Yük indirme Hattı için bağlantı bütçeleri hesaplanacaktır. Bu bağlantı bütçeleri hesaplanırken, ilk olarak görev yükü veri boyutu dikkate alınarak Haberleşme Alt Sistemi Gereksinimler bölümündeki maddelere göre gerekli E_b/N_0 (Sinyalin gürültüye olan oranı) ve toplam kayıplar belirlenecektir. Daha sonra belirlenen mevcut E_b/N_0 değerine ulaşmak için uygun ekipmanlar seçilecektir. Kullanılacak olan denklemler, sırası ile aşağıdaki tabloda gösterilmiştir.

Denklem	No	Açıklama
BER = $\frac{1}{2} erfc(\sqrt{\frac{E_b}{N_0}})$ [Proakis ve Salehi, 2007]	59	Gereksinim bölümünden istenilen BER değerine göre gerekli $\frac{E_b}{N_0}$ değeri belirlenir.
$erfc(x) = \frac{2}{\sqrt{\Pi}} \int_{x}^{\infty} e^{-t} dt$ [Andrews,1992]	60	erfc fonksiyonun açılımı
$Link Marji = (Mevcut \frac{E_b}{N_0} - Gerekli \frac{E_b}{N_0}) \ge 0$	61	Burada $Mevcut \frac{E_b}{N_0}$ değerinin minimum olması gereken değer hesaplanır.
$Mevcut \frac{E_b}{N_0} = Alici \frac{C}{N_0} - Kullanici veri hizi$	62	Yukarıda bulunan minimum $Mevcut \frac{E_b}{N_0}$ değeri için olması gereken minimum C/N_0 değeri hesaplanır.
Kayıplar = Yol kaybı(dB) + Atmosferik kayıplar(dB) + Fade marjı(dB) + Hat kaybı(dB)	63	Burada toplam kayıplar hesaplanır.
$Yol kaybi(dB) = 32,45 + 20 \log_{10}(f_{mhz}) + 20 \log_{10}(Menzil_{km})$	64	Toplam kaybın bir parametresi olan Yol kaybının formülü.
$Menzil: \sqrt{r^2 + (r+h)^2 - 2r(r+h)\cos\left(\arccos\left(\frac{r}{r+h}\cos(el)\right) - el\right)} \ km$	65	Yol kaybını hesaplamak için kullanılacak olan Menzil formülü
Atmosferik kayıplar(dB)= Yağmur zayıflaması(dB) + Atmosferik emilim	66	Toplam kaybın bir parametresi olan Atmosferik kaybının formülü

Tablo 14 Haberleşme Alt Sistemi İçin Kullanılan Denklemler

$A = aR_p^b L_s r_p \ dB$ [Hum,2017]	67	Yağmur zayıflamasının formülü
$A_0 = a_{a0} L_{a,eff} \csc\left(\theta\right)$	68	Atmosferik emilimin formülü
$\frac{C}{N_0} = EIRP(dBW) - Losses(dB) + \frac{G}{T}\left(\frac{dB}{K}\right) + 228,6\frac{dBW}{K} - Hz$ [Link budget exercises, University of Surrey]	69	Burada minimum olması gereken <i>C/N</i> ₀ değerini karşılayacak EIRP ve <i>G/T</i> değerleri belirlenir.
$EIRP(dBW) = P_t - L_c + G_a$	70	Yukarı hat için EIRP değeri uydu üzerindeki ekipmanların özellikleri kullanılarak hesaplanır. Aşağı hat için EIRP değeri yer istasyonundan alınır.
$\frac{G}{T} = Kazanç(dB) - Sistem gürültü sıcaklığı(K)$	71	Yukarı hat için <i>G</i> / <i>T</i> değeri yer istasyonundan alınır. Aşağı hat için <i>G</i> / <i>T</i> değeri uydu üzerindeki ekipmanların özelliklerine göre hesaplanır.
$a_{o} = \begin{cases} 0,001 \left[0,00719 + \frac{6,09}{f^{2} + 0,227} + \frac{4,81}{(f - 57)^{2} + 1,50} \right] f^{2} \ f < 57 \ GHz \\ a_{0}(57GHz) + 1,5(f - 57) & f \ge 57 \ GHz \end{cases}$ $a_{w} = 0,0001 \left[0,050 + 0,0021\rho + \frac{3,6}{(f - 22,2)^{2} + 8,5} + \frac{10,6}{(f - 183,3)^{2} + 9} + \frac{8,9}{(f - 325,4)^{2} + 26,3} \right]$	72	Bu parçalı denklemler ile oksijen ve suyun yaklaşık olarak zayıflatma sabitleri hesaplanabilir. Burada f frekansı, a_o oksijenin zayıflatma sabitini, a_w suyun zayıflatma sabitini temsil etmektedir.
$\rho(h) = \rho_0 e^{-\frac{h}{h_s}}$	73	Yoğunluk, yüksekliğin fonksiyonu olarak bu denklem ile tanımlanabilir.
$h_s = \frac{RT}{g}$	74	Ölçek yüksekliği
$a_a(h) = a_{a0}e^{-\frac{h}{h_s}}$	75	Zayıflatma katsayısının yükseklik cinsinden gösterimi
$L_{a,eff} = h_s e^{-\frac{h_0}{hs}}$	76	Uydu ve yer istasyonu arasında kurulacak olan bağlantının eşdeğer dikey yol uzunluğu
$L_s = (h_R - h_0) / \sin(El)$	77	Yağmur boyunca, sinyalin etkili eğik yer uzunluğu
$a_c = (a_h + a_v)/2$ $b_c = \frac{a_h b_h + a_v b_v}{2a_c}$	78	Dairesel polarizasyon için zayıflama katsayıları

$NF = 10\left(\frac{T_{noise}}{T_{ref}} + 1\right)$	79	Gürültü figürünün referans sıcaklığı ve sistem sıcaklığı cinsinden gösterimi
Toplam piksel = <u>Yatay Uzunluk</u> x <u>Dikey Uzunluk</u> <u>Çözünürlük</u> x	80	X bant için çekilen fotoğrafın toplam kaç piksel olduğu bu formül ile belirtilebilir.
Dosya boyutu = Toplam piksel x Bayt x Bant Sayısı	81	Toplam piksel belirlendikten sonra, dosya boyutu bu formül ile hesaplanabilir.(Bant sayısı görev yükü kısmından alınmaktadır)
Veri hızı = <mark>Dosya Boyutu</mark> Geçiş Süresi	82	Dosya boyutu belirlendikten sonra, veri hızı bu denklem ile hesaplanabilir. (Geçiş süresi, yörünge kısmından alınmaktadır)

X bant için kullanılacak olan veri hızı, aşağıda verilen algoritma ile hesaplanacaktır.

Tablo 15 Veri Boyutu Hesaplama Algoritması

Uydunun ortalama geçiş süresi yörünge bölümünden elde edilecektir.
Çekilen fotoğrafın bant sayısı, renk derinliği ve fotoğrafın şerit genişliği Görev yükü bölümünden elde edilecektir.
Daha sonra, bu değerler birbirleri ile çarpılarak bir fotoğrafın sahip olduğu piksel sayısı belirlenecektir. (80.denklem kullanılarak)
Piksel sayısı belirlendikten sonra bir fotoğrafın dosya boyutu belirlenecektir (81.denklem kullanılarak)
Bir günde çekilen toplam fotoğraf sayısına göre, toplam dosya boyutu belirlenecektir.
Elde edilen bu dosya boyutu, uydunun geçiş süresine bölünerek gerekli veri hızı bulunacaktır. (82.denklem kullanılarak)

Parametre	Anlamı
E_b/N_0	Sinyalin, gürültüye olan oranı
erfc(x)	Tamamlayıcı hata fonksiyonu
C/N_0	Taşıyıcının gürültü yoğunluğuna oranı
EIRP	Efektif İzotropik Yayılma Gücü
C/N_0	Taşıyıcının gürültü yoğunluğuna oranı
G/T	Anten kazancının, sistem sıcaklığına olan oranı

Tablo 16 Denklemlerde Kullanılan Parametreleri ve Anlamları

Parametre	Anlamı
Yol kaybı(dB)	Mesafe nedeni ile boşlukta oluşan kayıp
Atmosferik kayıplar(dB)	Dünyanın atmosferi ve olumsuz hava şartları nedeni ile oluşan sinyal kayıpları.
Kablo kaybı(dB)	Hat kablolarının akımla ısıtılması nedeniyle elektrik enerjisi kaybı.

Tablo 17 Denklemlerde Kullanılan Kayıpların Anlamları

Güç Alt Sistemi

Alt sistemlerin çalışabilmesi için elektrik güce ihtiyacı olmaktadır. Bu ihtiyaç da Güç Alt Sistemi (GAS) tarafından sağlanır. Böylece GAS, Görev Yükü ve diğer alt sistemlere gücü sağlar, depolar, düzenler ve dağıtır. Kısacası, uydudaki hiçbir şey GAS olmadan çalışmamaktadır. GAS, kendi sağlık durumu ve yer istasyonu tarafından kontrol için komut ve kontrol kabiliyetine sahiptir.

Bu kısımda Güç Alt Sistemin (GAS) ana gereksinimleri, ana fonksiyonları, GAS mimarisi ve güç denge analizi anlatılmaktadır. Bunların sonucu olarak Uygulama kısmında güç bütçesi ve GAS teknik özellikleri sunulmaktadır.

Güç Alt Sistemi Gereksinimleri:

No	Güç Alt Sistemi Gereksinimleri	Ana Gereksinim No
GAS.1	GAS, görev ömrü (3 yıl) boyunca uydu yüklerine sürekli elektrik gücü sağlayacaktır.	3
GAS.2	GAS, uydu için elektriği kontrol edecek ve dağıtacaktır.	-
GAS.3	GAS, sistemin ortalama ve pik elektrik yükleri için güç gereksinimlerini desteklemelidir.	-
GAS.4	GAS, tüm görev modlarının güç tüketimini karşılamalıdır.	-
GAS.5	GAS, batarya şarj akımı ve voltajı şarj regülatörü tarafından düzenlenmelidir.	-
GAS.6	Güneş ışığı süresi boyunca güneş dizilerin tarafından üretilen elektrik gücü, platform ve görev yükünü beslemeli ve bataryaları şarj etmelidir.	-
GAS.7	Tutulma süresi boyunca GAS, bataryaları, platformu ve görev yükünü elektrik gücü ile beslemelidir.	-
GAS.8	GAS'ın toplam ağırlığı 13 kg olmalıdır.	1
GAS.9	GAS ekipmanlarının görev ömrü en az 3 yıl olmalıdır.	3

Tablo 18 Güç Alt Sistemi Gereksinimleri

Güç Dengesi Analizi ve Güç Bütçesi:

Mikro Uydunun Güç Bütçesi ve Analizi 7 temel adımda hesaplanmıştır [Everett, Puschell ve Werts, 2015]:

<u>Adım 1:</u> Görev ömrü ve ortalama güç gereksinimi, güneş panellerinin boyutlandırılmasında iki önemli tasarım konusudur. Bu nedenle, yörünge periyodunu, güneş ışığı görme ve tutulma süreleri (Td & Te) tanımlanıp ve sistemin ana modları ve güç tüketimleri belirlenir.

Uydunun dünya gölgesinde kalma süreci boyunca oluşan açıyı kullanarak gölgede kalma (tutulma) süresi hesaplanmaktadır. Tutulma süresine karşılık açı şekil 8'de gösterilmektedir.

Tutulma süresine karşılık açı:

$$\boldsymbol{\theta}_{Tutulma} = 2 * \operatorname{Sin}^{-1}(R_{dunya} \boldsymbol{I} r) (83)$$

R_{dünya}: Dünya yarıçapı

r: Pozisyon (Dünya yarıçapı+ irtifa)

Tutulma süresi, θ_{Tutulma} ve yörünge periyodu (T) kullanılarak hesaplanır.

Tutulma süresi:

$$\underline{\mathbf{T}_{e}} = \mathbf{T} * \boldsymbol{\theta}_{\text{Tutulma}} / 360^{\circ} (84)$$

Güneş görme süresi:

<u>Adım 2:</u> Tüm yörünge boyunca uyduyu çalıştırmak için güneş panelinin gün ışığında sağlaması gereken gücü (P_{sa}) hesaplanır.

$$\mathbf{P_{sa}} = [((P_e * T_e) / X_e) + ((P_d * T_d) / X_d)] / T_d (86)$$

P_e: Uydu güç gereksinimi (tutulma sırasında düzenleme ve pil şarj kayıpları hariç).

- P_d: Uydu güç gereksinimi (gün ışığında düzenleme ve pil şarj kayıpları hariç).
- Te: Yörünge başına tutulma süresinin.

T_d: Yörünge başına gün ışığı süresi.

X_e: Güneş dizilerinden piller vasıtasıyla bireysel yüklere giden yolun verimliliği.

X_d: Güneş dizilerinden doğrudan yüklere giden yolun verimliliği.

<u>Adım 3:</u> Güneş hücresi verimliliği belirlenip ve güneş hücresi ile alan birimi başına elde edilen güç (P_o) hesaplanır.

Po = Güneş hücresi verimliliği * Güneş akısı (87)

<u>Adım 4:</u> Güneş hücresinin verimsizliği, gölgeleme ve sıcaklık değişimi gibi nedenlerden kaynaklanan doğal bozulma ve güneş ışığı görme etkileri eklenerek kullanım ömrü başında alan birimi başına elde edilen güç (P_{BOL}) hesaplanır.

$$\mathbf{P}_{BOL} = \mathsf{P}_{\mathsf{o}} * \mathsf{I}_{\mathsf{d}} * \cos(\theta) \text{ (88)}$$

I_d : Doğal bozulma

heta : Güneş görme açısı

<u>Adım 5</u>: Radyasyon hasarı nedeniyle kullanım ömür boyu için fiili indirgeme (L_d) hesaplanır.

$$L_d = (1 - D)^L (89)$$

D : Yıllık bozulma

L : Yıl olarak uydu ömrü

<u>Adım 6:</u> Kullanım ömrü sonunda güneş panelin alan birimi başına performansı (P_{EOL}) ve gerekli güneş panelin alanı (A_{SA}) hesaplanır.

$$P_{EOL} = P_{BOL} * L_d (90)$$

 $A_{SA} = P_{sa} / P_{EOL} (91)$

<u>Adım 7:</u> Bataryanın şarj / deşarj döngüsüne göre deşarj derinliği (DoD) tanımlanıp, ardından bataryanın gerekli kapasitesi (C_{bat}) hesaplanır.

L: Uydu Ömrü T: Yörünge Periyodu T_e: Saat olarak tutulma süresi

Uydu Yapısı

Mikro Uydu yapısal alt sistemi, fırlatıcı tarafından oluşturulan titreşim yüklerine ayarlanabilecek ve uyduyu uzay ortamında meydana gelen çevresel faktörlerden koruyabilecek özellikle olacaktır. Bu bölümde, Mikro Uydu'nun diğer alt sistemler ile birlikte öngörülen hacimleri ve ağırlıkları hesaplandıktan sonra kavramsal bir kütle bütçesi sunulacaktır. Yapısal alt sistemin sonlu elemanlar, doğal frekans analizleri gibi teknik parametreler sunulacaktır.

UYGULAMALAR

Görev Yükü

300 km yörüngede 0,5 m YÖM elde etmek için 35-40 cm arası bir ayna açıklığı göz önüne alınmıştır. YÖM, kütle ve hacim kısıtları dikkate alındığında 39 cm bir ayna açıklığı olması kararlaştırılmıştır. Dalga boyu spektral bant aralığına göre seçilmiştir. Toplam piksel sayısı ve piksel açıklığı, elektro-optik görev yükü içi seçilen CMOS dedektörü parametrelerine göre belirlenmiştir. Belirlenen parametreler aşağıdaki tablodaki gibidir:

Tablo 19 Elektro-Optik Görev Yükü Belirlenen Performans Parametreleri

Parametre	Sembol	Değer	Birim
Hedeflenen YÖM	YÖM	0,5	m
Dalga Boyu	λ	5,50E-07	m
Toplam Piksel Sayısı	N _{piksel}	16000	-
CMOS Piksel Açıklığı	р	5,00E-06	m
Ayna Açıklığı	D	0,39	m
Spektral Bant Aralığı	λ	400-700	nm

Tablo 19 Elektro-Optik Görev Yükü Belirlenen Performans Parametreleri içerisinde görüldüğü üzere toplam piksel sayısı ve CMOS piksel açıklığı, seçilen dedektöre göre belirlenmiştir.

Elektro-Optik görev yükü için temel gereksinimler ve parametreler belirlendikten sonra diğer performans gereksinimleri yörünge ve belirlenen performans parametreleri kullanılarak hesaplanmıştır. Aşağıdaki tabloda hesaplanan parametreler ve formülleri verilmiştir:

Parametre	Formül	Sembol	Değer	Birim
Şerit Genişliği	N _{piksel} * YÖM	SW	8000	m
Anlık Görüş Alanı	$\frac{Y \ddot{O} M}{h}$	IFOV	9,5493E-05	Derece
Görüş Alanı	2 * IFOV * N _{piksel}	FOV	3,05577	Derece
Odak Uzaklığı	$\frac{h*p}{GSD}$	f	3	m
Rayleigh Kırınım Kriteri	$1,22 * \frac{\lambda}{D}$	θr	1,72051E-06	Rad
Yer Ayırma Mesafesi	$1,22 * \frac{\lambda}{D} * h$	YAM	0,51615	m
Yakınlaştırma	$\frac{f}{h}$	М	0,00001	-
F Sayısı	$\frac{f}{D}$	F#	7,69230	-
Q-Parametresi (Kalite Faktörü)	$\frac{\lambda * f}{p * D}$	Q	0,84615	-

Tablo 20 Elektro-Optik Görev Yükü Performans Parametreleri

SW	:	Dedektörün yeryüzünde taradığı (gördüğü) alanın genişliği (İng. Swath Width)
IFOV	:	Belirli bir yükseklikte, herhangi bir zamanda, görev yükü tarafından yeryüzünde görüntülenen alan (İng. Instantaneous Field Of View)
FOV	:	Bir lensin her an görebildiği alan (İng. Field Of View)
f	:	Lense düşen paralel ışık ışınlarının birleştiği, lensten odak noktasına olan uzaklık
θr	:	Dairesel bir açıklık için kaynak görüntünün merkezindeki noktadan, ilk karanlık girişim halkasına olan açısal uzaklık [Larson ve Wertz, 2005]
GRD	:	Görüntü üzerindeki tanınabilir en küçük elementin uzamsal çözünürlük ölçümü [Orych, 2015]
М	:	Görüntü boyutunun resim boyutuna oranı
F#	:	Bir optik sistemin F-sayısı, sistemin odak uzaklığının giriş açıklığının çapına olan oranıdır. Lens hızının nicel olan ölçümüdür [Smith, 2007].
0		Q-Faktör (Kalite Faktörü) adında bir tasarım parametresidir. Odak düzleminin

Q : fiziksel boyuna karşılık gelen uzamsal kesme frekansının dedektör eleman boyuna oranıdır [Wertz, Everett ve Puschell, 2011].

Tablo 20 Elektro-Optik Görev Yükü Performans Parametreleri üzerinde görüldüğü şekilde elektro-optik görev yükü parametreleri belirlenmiştir. Bu tasarımda görüş açısı (FOV) ve şerit genişliğinin (SW) bu optik tasarım için zorlayıcı olması öngörülmektedir. Bunun sebebi optik tasarımın limitlerinden ve odak düzlemine düşen ışığın belirlenen piksel sayısının tamamını karşılayamamasından kaynaklanmaktadır. Farklı bir dedektör seçimi ile piksel sayısında optimizasyona gidilerek bu problemin düzeltilmesi planlanmaktadır.

<u>Tarama Tekniği:</u> Uydunun pozlama zamanının, gecikme olmadan görüntü alınabilmesi için aşağıda hesaplanan değerden daha düşük olması gerekmektedir.

$$ET = \frac{Y\ddot{O}M}{v_g} = 6,7762 * 10^{-5} s \quad (94)$$

ET: Dedektör görüntü almak için ışığa maruz kalması gereken süre [Abolghasemi ve Abbasi-Moghadam, 2012]

<u>Teleskop Tasarımı:</u> Şekil 2, Mikro Uydu için tasarlanan RC Cassegrain Teleskobu aynalarından ışık yansımalarını göstermektedir.

Şekil 9 RC Cassegrain Teleskop Ayna Tasarımı

<u>Dedektör Seçimi:</u> Bu görev için uzay kalifikasyonuna sahip lineer CMOS dedektörü araştırmalarından sonra en iyi seçeneğin aşağıdaki parametrelere benzer özelliklere sahip bir dedektörün olacağı görülmüştür. Görev hedefleri baz alındığından dolayı elektro-optik kamera performans hesaplamaları pankromatik (PAN) banda göre yapılmıştır.

Parametre	Pankromatik (PAN)	Multispektral (MS)	Birim	
	Değ			
Piksel Boyu	5 x 5	10 x 10	μm	
Piksel Aralığı	5	10	μm	
Piksel Sayısı	16000 x 48	8000 x 24	-	
Görüntü Boyutu	80000 x 48	80000 x 24	μm	
Çizgi Hızı	14	7	kHz	
Çekim Süresi	71,42	142,86	μs	

Tablo 21	Dedektör	Parametreleri
----------	----------	---------------

Tablo 21 Dedektör Parametreleri üzerinde görüldüğü gibi görev hedefi olan PAN bant çekimi yapmak için 71,42 µs gerekmektedir. Tarama Tekniği bölümünde görüldüğü üzere uydunun pozlama süresi 67,76 µs hesaplanmıştır. Dedektör çekim süresi ile uydu pozlama süresi arasındaki 3,66 µs olan zaman aralığı uydunun gecikme manevrasına ihtiyaç duyacağını göstermektedir.

<u>Görev Yükü Boyut, Kütle ve Güç:</u> Görev analizi fazında, görev yükü için kütle dağılımı %40 – 45 civarı belirlenmiştir. Belirlenen görev yükü ağırlığının bu aralıkta olması planlanmaktadır. Teleskobun uzunluğu 92 cm olacaktır. ODM ve ara yüz plakaları takıldıktan sonra toplam uzunluğun 112-122 cm olması beklenmektedir.

Tablo 22 Görev Yükü Boyutları

Kamera Uzunluğu	0,92	m
Toplam Teleskop Uzunluğu	1,1-1,2	m

Görev yükünün operasyonel ve bekleme güç tüketimi, kullanılan dedektör ve benzer görev yüklerine bakılarak belirlenmiştir.

Tablo 23 Görev	Yükü G	üç Tüketimi
----------------	--------	-------------

Beklemede Güç Tüketimi	30	W
Operasyonel Güç Tüketimi	185	W

Teknik çizim programı kullanılarak, elektro-optik kameranın katı çizim modeli yapılmıştır. Teleskop aynalarının tasarımından sonra teleskop tüpü, ikincil ayna için örümcek kolları ve ODM gibi parçalar eklenerek görev yükünün kaba tasarımı yapılmıştır.

Şekil 10 Görev Yükü Önden Görünümü

Şekil 11 Spider Tasarımı

Şekil 12 Odak Düzlemi Montajı (ODM)

Elektro-optik görev yükü için yapılan kavramsal analiz sonucunda bu özelliklere sahip bir kameranın gerekli optimizasyonlar yapıldıktan sonra tasarlanabileceği görülmektedir. Görev yükü kütle olarak en başta verilen kütle bütçesi sınırları içerisinde yer almaktadır ve gereken YÖM değerini sağlayabilmektedir. Dedektör araştırması derinleştirilerek piksel sayısı ve çekim süresi parametreleri görev hedefine daha uygun değerlere sahip bir ekipman bulunduğu takdirde FOV, SW ve çekim süresi optimize edilerek tasarım limitleri içerisinde tutulabilecektir.

Yörünge

<u>Güneş Eş Zamanlı Yörünge Seçimi:</u> Güneş Eş Zamanlı Yörünge eğiminin (i) ortalama 96 derecenin üzerinde olması ve bu nedenle dünyanın ortalama 83 derece kuzey ve 83 derece güney enlemleri arasında kalan bölgenin tamamı görüntülenebilmektedir.

Yörünge 300 km seçilmesi:

Çözünürlüğü arttırmak için yörüngenin aşağı çekilmesi ihtiyacı doğmaktadır. 300 km aşağısında ise atmosferik sürtünmenin yüksek olmasından dolayı yörüngenin yükselmesi ihtiyacı doğmaktadır. Hedeflenen çözünürlük ve daha düşük atmosferik sürtünme olan ana iki faktörü dengelemek için görev yükünün 0,5 m çözünürlüğü sağlayabilecek en yüksek irtifa yörünge irtifası olarak kullanılmıştır. Buna karşılık 300 km yörüngesi seçilmektedir.

<u>Yörüngenin Çıkış Düğümü Sağaçıklığı Seçimi:</u> Yerel Zamanlı Çıkış Düğümü (YZÇD) (İng. Local Time Ascending Node ya da LTAN), Güneş'e göre, güneyden kuzeye doğru ilerlerken uydunun ekvatordan geçtiği yerel saat açısıdır. 10:30 durumunda yörünge düzlemi güneş ışığına göre biraz eğik şekilde oluşmaktadır. Uydu ekvatordan geçerken güneş yükseliyor ancak tepede değil ve yerel saat 10:30 civarında olmaktadır. Bu nedenle bu yörüngeye 10:30 YZÇD denir. Genellikle, uydu bir optik sensör taşıyorsa, sabah sisinden kaçınmak için 10:00'dan büyük bir YZÇD kullanmak önerilir. Buna ek olarak, 10:30 ve 13:30 benzer aydınlatma koşulları sergiliyor ve güneş parıltı etkisinden kaçınmak için iyi seçimlerdir. Güneş parlaması, güneş yüzeyden uydu sensörünün yüzeyine baktığı açıyla yansıdığında ortaya çıkan bir olgudur. Öte yandan, bulut oranı öğleden sonra artar. Bu nedenle 10:30 civarında YZÇD gözlem durumu için uygun görülmüştür.

<u>Çıkış Düğümü Sağaçıklığı</u> Ω = 320

Hesaplanan Yörünge Parametreleri aşağıdaki tabloda sunulmaktadır:

Parametre	Hesaplanan Değer	Birim	Kaynak Denklem
Yarı Büyük Eksen (<i>a</i>)	6678	km	Denklem 4
Dışmerkezlik e	0,00000001 -		Dairesel Yörünge
Eğiklik <i>i</i>	96,6765	derece	Denklem 9
Enberi Açısı ω (der)	0	derece	-
Çıkış Düğümü Sağaçıklığı_Ω	320	derece	-
Yörünge Ortalama Hareketi n	0,001157	rad/sn	Denklem 5
(rad/s)	15,9099	devir/gün	
Yörünge Perivodu T	5431	sn	Denklem 6
	90,51	dakika	
Çıkış Düğümü Açıklığı	$1,14 * 10^{-5}$	derece/sn	Denklem 7
değişim oranı Ω	0,9856	derece/gün	
Enberi Değişim Oranı $\dot{\omega}$	-7,98 *10 ⁻⁷	rad/sn	Denklem 10

Tablo 24 Hesaplanan Yörünge parametreleri

ΔV Hesaplama Sonuçları:

Yukarıdaki verileri ve denklemleri kullanarak gereken $\Delta V_1, \Delta V_2$, ΔV_3 ve ΔV_4 hesaplamaları ekteki şekilde sunulmuştur:

Açıklama	Parametre	Değer	Birim	Kaynak Denklem
İlk Pozisyon	ri	6676,8	km	Tablo 9
Final Pozisyon	rf	6678,1	km	Tablo 9
İlk İrtifa	hi	298,6	km	Denklem 11
Final İrtifa	hf	300,0	km	Denklem 11
İrtifa Düşüşü	Delta_h	1,4	km	Denklem 13
İlk Hız	Vi	7,7265	km/s	Denklem 12

Tablo 25 İrtifa Düşüşünü Telafisine Göre ΔV1

Final Hız	Vf	7,7258	km/s	Denklem 12
De	elta_V	0,0008	km/s	Denklem 14
Delta_V		0,8	m/s	Denklem 14
Üç Yıldaki A	teşleme Sayısı	2223	Ateşleme	Denklem 15
Delta_V ₁		1749,7	m/s	Denklem 14

Tablo 26 Yörünge Düzleminin Eğim Bozulması Telafisine Göre ΔV2

Açıklama	Parametre	Değer	Birim	Kaynak Denklem
İrtifa	h	300	km	Sabit
İlk Düzlemdeki Uydu Hızı	V1	7,7258	km/s	Denklem 12
Final Düzlemdeki Uydu Hızı	V2	7,7258	km/s	Denklem 12
İlk Düzlemdeki Eğim	i1	96,6793	Derece	Tablo 9
Final Düzlemdeki Eğim	i2	96,6765	Derece	Tablo 9
Delta_i	-0,0028	Derece	Sabit	
Delta_V	0,0004	Km/s	Denklem 16	
Delta_V	0,4	m/s	Denklem 16	
Üç yıldaki Ateşleme Sa	2223	Ateşleme	Denklem 15	
Delta_V ₂	841,9	m/s	Denklem 16	

Tablo 27 Çarpışmadan Kaçınma Manevrasına Göre $\Delta V3$

Açıklama	Değer	Birim	Kaynak Denklem
İrtifa Değişimi	0,5	km	Sabit
Delta_V	0,3	m/s	Denklem 14
Yıllık Manevra sayısı	4	Manevra	Sabit
Delta_V ₃	3,6	m/s	Denklem 14

Açıklama Parametre		Değer	Birim	Kaynak Denklem
İrtifa	h	300	km	Sabit
İrtifa Hata Payı	Delta_h	15	km	Tablo 8
İrtifa İçin Gerek	en Delta_V	0,0087	km/s	Denklem 14
Eğim	i	96,6765	Derece	Sabit
Eğim Hata Payı	Delta_i	0,15	Derece	Tablo 8
Eğim İçin Gereken Delta_V		0,0202	km/s	Denklem 16
		0,0289	km/s	Denklem 14
Della_	+ Denklem 16			
			Denklem 14	
Delta_	28,9	m/s	+	
			Denklem 16	

Tablo 28 Fırlatıcıya Göre ΔV4

Tabla	20	Toplom	۸۱/
I abiu	29	TOplan	Δv

Parametre	Değer	Birim	Kaynak Denklem
Delta_V₁	1749,7	m/s	Denklem 14
Delta_V₂	841,9	m/s	Denklem 16
Delta_V₄	28,9	m/s	Denklem 14 ve Denklem 16
Delta_V₃	3,6	m/s	Denklem 14
Toplam Delta_V	2624,1	m/s	-
Emniyet Faktörü	% 20	-	-
Emniyet Faktörü ileToplam Delta_V	3148,9	m/s	-

<u>Simülasyon programların çıktı verileri:</u> Yukarıdaki yörünge parametreleri simülasyon programına girdi olarak verilip tekrar ziyaret zamanı ve Türk Hava Kurumu Üniversitesi ile kurulabilecek haberleşme süreleri hesaplanmıştır.

Tablo 30 Haberleşme ve Tekrar Ziyaret Süreleri

Simülasyon Sonuçları						
En Az Haberleşme Süresi	10 s					
Ortalama Haberleşme Süresi	411 s = 6,85 dk					
Maksimum Haberleşme Süresi	523 = 8,71 dk					
Ortalama Tekrar Geçiş Zamanı	714572 s = 8,3 Gün					

Haberleşme süresi, haberleşme alt sisteminde baz alınarak haberleşme hesaplamaları yapılmaktadır.

Şekil 13 Mikro Uydu'nun Bir Günlük Geçişler (GMAT)

İtki Alt Sistemi

Analizlere, öncelikle Hall İtici ve İyon İtici arasındaki itki ve I_{sp} farkının, yakıt miktarı ve yörünge düzeltme süresi üzerindeki etkisini anlamak için yapılan analiz ile başlanmıştır. Her şeyden önce, durumu en kötü koşullarda görmek için en kötü senaryo oluşturulmuştur. Uydunun yüzey alanı A=4 m² ve sürükleme katsayısı C_d=2,35 alınarak, 1976 standart atmosfer modeli ile Mikro Uydu'nun yörünge bozulmaları modellenmiştir. Yörünge irtifasının belli olmadığı durumda hesaplamalar irtifanın yaklaşık 10 km düşüşleri için yapılmıştır. Analiz için seçilen bir A Hall iticinin, 350 Watt güçte çalışırken, I_{sp}'si 1600 sn ve ürettiği itki 18 mN olarak; B İyon iticinin ise 50 Watt güçte çalışırken, I_{sp}'si 3000 sn ve ürettiği itki 0,5 mN olarak alınmıştır. Alınan bu güç değerleri, iticilerin çalışabileceği en yüksek güçtür.

Hesaplamalar sonucunda, karşılaştırma için elde edilen sonuçlar tabloda verilmiştir. Tabloyu yorumlamak gerekirse, örneğin, Hall iticinin bu düşüşü düzeltmesi için yılda 511 kez ateşleme yapması gerekir. Bir kerelik yörünge düzeltmesi yaklaşık 7,9 saat sürer ve 3 yıl içinde yaklaşık 16,6 kg yakıt tüketilir, 3 yılın sonunda toplam Delta-V 2,867 km/sn'dir. Diğer taraftan, İyon iticinin bir yılda yörünge telafisi için 75 kez ateşleme yapması gerekir ve 3 yıl içinde yaklaşık 1,3 kg yakıt tüketir. Bir seferde yörünge düzeltmesi yaklaşık 309,7 saat sürer ve 3 yılın sonunda toplam Delta-V 0,4208 km/sn'dir. Atmosferik yoğunluk daha yükseklere çıkıldıkça azalır, yörünge düşüş süresi uzar ve böylece ateşleme sayısı azalır. Ayrıca, gereken yakıt miktarı ve telafi süreleri de azalır.

Tablodan görülebileceği gibi, irtifaya bakılmaksızın, yaklaşık 10 km'lik düşüşü telafi etmek için geçen süre, daha fazla itki sağlayan Hall itici için çok daha düşüktür. Uydunun görevi gözlem olduğu için bu sürenin düşük olması oldukça önemlidir. Aynı zamanda, uzun süreli ateşlemelerin daha fazla termal kontrol gerektirmesi nedeniyle, mümkün olduğunca kısa süreli ateşlemelerin yapılması da tercih sebebidir. Diğer taraftan, daha yüksek I_{sp}'ye sahip olan iyon itici, görev sonunda daha az yakıt tüketir. Hall iticinin yakıt miktarı, iyon iticisinin ise ateşleme süresi yüksek olduğundan daha fazla itici araştırması ve analizi gerekmiştir. Aynı zamanda, 10 km düşüşü telafi etmek için gereken süre fazla çıkmıştır. Bu yüzden, daha düşük irtifa düşüşlerinin incelenmesine karar verilmiştir.

	A Hall İtici [350 watt, T = 18 mN, lsp = 1600 sn]			B İyon İtici [50 watt, T = 0,5 mN, Isp = 3000 sn]					
İrtifa (km)	Yörünge Düzeltme Süresi (sa)	3 yıllık ateşleme sayısı	3 yıllık yakıt miktarı (kg)	Toplam ΔV (km/sn)	Yörünge Düzeltme Süresi (sa)	3 yıl için ateşleme sayısı	3 yıllık yakıt miktarı (kg)	Toplam ΔV (km/sn)	İrtifa Düşüş Miktarı (km)
300	7,9352	511	16,6993	2,867	309,6839	75	1,2918	0,4208	9,6890
310	7,8781	525	17,0312	2,9296	307,9967	76	1,3019	0,4241	9,6584
320	8,2161	431	14,5938	2,4753	317,0392	72	1,2696	0,4135	9,9623
330	8,2171	366	12,402	2,0777	313,4521	70	1,2204	0,3974	9,8693
340	8,3447	307	10,5687	1,7527	315,3104	67	1,175	0,3825	9,9477
350	8,3564	260	8,966	1,474	313,1699	65	1,1322	0,3685	9,9002

Tablo 31 Hall İtici ve İyon İtici 10 Km Düşüş Karşılaştırma Analizi
300 km irtifanın ve uydunun yüzey alanının belirlenmesinden sonra analizlerde 1-2 km arası düşüşlerin değerlendirilmesine karar verilmiş ve analizler bu değere göre yapılmıştır. Uydunun yüzey alanı A=3,5 m² ve sürükleme katsayısı C_d=2,35 alınarak, 1976 standart atmosfer modeli ile Mikro Uydu'nun yörünge bozulmaları modellenmiştir. Analizlerde 4 tane B İyon itici, iki farklı güçte çalışan 1 tane A Hall itici, 1 tane C Hall itici, 2 tane D iyon itici ve 1 tane E Hall itici kullanılmıştır. Parantez içlerinde belirtilen sayılar itici sayısını temsil etmektedir. İtici sayısı, iticinin tükettiği güç miktarına göre belirlenmiştir. Panellerin ve bataryanın kütlesine göre, iticiler için maksimum güç 300 Watt olarak belirlenmiştir. Toplam itici gücü, toplam itki, toplam I_{sp} ve toplam itici kütlesi iticilerin veri kağıtları referans alınarak hesaplanmıştır. İticinin toplam tükettiği güç, toplam itki ve toplam itici kütlesi itici sayısıyla bu değerlerin çarpımı kadardır. Kullanılan iticiler aynı olduğunda, yani aynı itkiye ve Isp 'ye sahip olduğunda, ortaya çıkan Isp bir tane iticinin Isp 'si ile aynı olacaktır. Tablo şu şekilde yorumlanabilir. 4 tane B İyon iticiden 200 Watt güç tüketerek, 2 mN itki, 3000 sn Isp elde edilir ve iticilerin toplam kütlesi 1,76 kg'dır. Bu itici ile irtifa düşüşünü telafi etmek yaklaşık 10,7 saat sürer ve 3 yılda 1235 kez ateşleme yapılır. 3 yıl görev ömrü boyunca 3,25 kg yakıt tüketilir ve toplam Delta-V 0,9721 km/sn'dir. Bu yakıt miktarına göre, yakıtı depolayacak küresel tankın kütlesi, 0,30 kg, hacmi 1,80 L, yarıçapı 7,55 cm ve kalınlığı 0,71 mm'dir.

İtici	Toplam İtici Gücü, Toplam İtki, Toplam Isp, İtici Kütlesi	Yörünge Düzeltme Süresi (sa)	3 yıllık ateşleme sayısı	3 yıllık yakıt miktarı (kg)	Toplam ΔV (km/sn)	Tank kütlesi (kg)	Tank hacmi (L)	Tank yarıçapı (cm)	Tank kalınlığı (mm)
B İyon İtici (4)	200 W, T = 2 mN I _{sp} = 3000 sn 1,76 kg	10,7542	1235	3,25	0,9721	0,301	1,8042	7,5521	0,7104
A Hall İtici (1)	250 W, T = 14 mN $I_{sp} = 1200 \text{ sn}$ 600 g	1,4552	2191	13,6307	1,7245	1,261	7,567	12,179	1,1457
A Hall İtici (1)	300 W, T = 16 mN I _{sp} = 1400 sn 600 g	1,2847	2223	11,9652	1,7497	1,107	6,6424	11,661	1,097
C Hall İtici (1)	200 W, T = 13 mN I _{sp} = 1390 sn, 1,1 kg	1,5829	2168	11,7661	1,7064	1,089	6,5319	11,596	1,0909
D İyon İtici (2)	290 W, T = 10 mN I _{sp} = 1900 sn 3,6 kg	2,0944	2080	8,4112	1,6371	0,778	4,6694	10,369	0,9754
E Hall İtici (1)	180 W, T = 11 mN I _{sp} = 1200 sn 0,75 kg	1,8562	2121	13,2254	1,6694	1,224	7,342	12,057	1,1342

Tablo 32 Farklı İticilerin Karşılaştırması

Elde edilen bir seferde ateşleme süresi, 3 yıl için yakıt miktarı ve 3 yıllık yakıt için gerekli tank parametreleri sonucu, daha doğru bir karar verebilmek için bir getiri-götürü (İng. Trade Off) analizi yapılmıştır. Bu getiri-götürü analizinde parametreler iticinin güç tüketimi, yakıt miktarı, toplam kütle (yakıt kütlesi, tank kütlesi ve itici kütlesi toplamı) ve yörünge düzeltme süresi olarak belirlenmiştir. İticinin güç tüketimi, yakıt miktarı ve toplam kütle parametreleri, kütle üzerinden bir etkiye sahiptir ve en yüksek puan en düşük kütlede olan iticiye verilmiştir.

Güç Tüketimi (Watt)	Güneş Paneli Kütlesi (kg)	Batarya Kütlesi (kg)
180	13,0	7,9
200	13,9	8,4
250	16,2	9,7
290	18,1	10,7
300	18,5	11,0

Tablo 33 Güçlere Göre Güneş Paneli ve Batarya Kütlesi

İticinin tükettiği güce göre güneş paneli kütlesi ve batarya kütlesi tabloda verilmiştir. Telafi süresi parametresi için ise, yörüngeyi en kısa zamanda telafi eden iticiye en yüksek puan verilmiştir. Yüzdesel ağırlıklar bu dört parametre için sırasıyla %25, %20, %10 ve %45'dir. Bu analize göre, 300 Watt güçte çalışan A Hall itici %70,4 ile en yüksek yüzdeye sahiptir. Bu yüzden, getiri-götürü analizi sonucu bu iticinin kullanılmasına karar verilmiştir.

	Yüzde Ağırlığı	B İyon İtici (4)	A Hall İtici (1) (250 W)	A Hall İtici (1) (300 W)	C Hall İtici (1)	D İyon İtici (2)	E Hall İtici (1)
Güç	% 25	22,5	18	15	22,5	15,5	25
Yakıt miktarı	% 20	20	4,8	5,4	5,5	7,7	4,9
Toplam kütle	% 10	10	4,4	5,0	4,9	5,3	4,5
Telafi Süresi	% 45	5,4	39,7	45	36,5	27,6	31,1
Toplam	% 100	57,9	66,9	70,4	69,4	56,2	65,5

Tablo 34 Farklı İticilerle Yapılmış Getiri-Götürü Analizi

Sistem tasarımı

Elektrik itki sistemi 3 ana birimden oluşur: İtici birimi (İB), güç işleme birimi (GİB) ve yakıt depolama ve kontrol birimi (YDKB). İtki alt sisteminin sistem mimarisi Şekil 14'de verilmiştir. GİB hem güneş panelinden güç almak için güç platformuna hem de uzkomut ve uzölçüm için uçuş bilgisayarına bağlıdır. Bu güç ile itici birime ve yakıt depolama ve kontrol birimine gerekli gücü ve kontrolü sağlar. Yakıt depolama ve kontrol birimi, tankta depolanan yakıtın kontrollü biçimde itici birime ulaşmasını sağlar. Ayrıca GİB'ye telemetri verileri sağlar.

Şekil 14 İtki Alt Sistem Mimarisi

Bazı itki sistemleri kutu gibi kapalı sistem olarak olarak tasarlanırken bazı itki sistemleri açık sistem olarak tasarlanır. Açık sistem için, itki sisteminin parçalarını ve gerekli sensörleri monte etmek daha kolaydır. Ayrıca açık sisteme ivmeölçerlerin ve termokuplların takılıp çıkarılması da montaj, entegrasyon ve test (İng. Assembly İntegration and Test (AIT)) açısından daha kolaydır. Kapalı sistem için, itki sistemini bir bütün olarak uyduya yerleştirmek daha kolaydır. Bununla birlikte, kapalı bir sistemde ısıyı yayan donanım daha fazla ısınmaya neden olabilir, bu da açık sistemi tercih etmenin daha uygun olacağına karar verilmiştir. İtki alt sisteminin katı çizim modeli Şekil 15'te verilmiştir.

Şekil 15 İtki Alt Sistemi Katı Çizim Modeli

İtici Birimi

İtici birimi, iticinin kendisi ve katottan oluşur. Hesaplamalar ve analizler sonucunda A Hall itici seçilmiştir. Kütlesi 450 gramdan küçük olan iticinin, 300 Watt güçte, 1400 sn özgül itki ve 16 mN itki sağladığı kabul edilmiştir. Kullanılacak katotla beraber arayüz boyutu 65 mm çap ve 100 mm uzunluktur. İtici besleme basıncı 25 mbar'dır. Katotun kütlesi yaklaşık 40 gramdır. 25 watt güçte çalışacaktır. Çalışma vakum basıncına katot literatür araştırması yapılarak 10⁻⁴ mbar kabul edilmiştir. İticinin ve katotun kontrolü ve gücü GİB tarafından sağlanır.

Güç İşleme Birimi

GİB, ham gücü itici ve yakıt depolama ve kontrol birimi için gerekli olan forma dönüştürür. GİB'ler genellikle elektrik itki sisteminin en pahalı elemanıdır, potansiyel olarak iticinin maliyetinin birkaç katıdır [Kamhawi, Liu, Benavides, Benavides, Mackey, Server-Verhey, Yim, Butler-Craig ve Myers, 2019]. Araştırma sırasında TÜBİTAK Uzay tarafından tasarlanan bir GİB bulunmuştur [Tsybulnyk ve Neugodnikov, 2019]. Bu GİB'yi kullanacak iticinin nominal gücü 300 Watt'tır. Aşırı yük modu (İng. Overload Mode) kullanılmadığı sürece GİB, seçilen itici ile çalışabilir. Uçuş bilgisayarının katılımı olmadan, iticiyi, katotu ve yakıt depolama ve kontrol birimini kontrol edebilir ve aynı anda uzölçüm toplayabilir. Görev yükü ve itici aynı anda çalıştırılmayacağından, itici yörünge telafisini en kısa sürede gerçekleştirmelidir. Uydunun görevi gözlem yapmak olduğu için belirlenen güçte elde edilen en yüksek itki seviyesi kullanılacaktır. Bu nedenle, bazı görevlerde kullanılan kısma seviyeleri (İng. Throttle Level) bu görevde kullanılmayacaktır. GİB yaklaşık 6,5 kg'lık bir kütleye sahiptir. Montaj elemanları dâhil GİB 'nin boyutu 250 x 280 x 350 mm'dir.

Şekil 16 TÜBİTAK Uzay 300 Watt GİB

Yakıt Depolama ve Kontrol Birimi

Yakıt, depolama tankındaki süper kritik koşullarda çok yüksek basınçta depolanır. Diğer taraftan, itici ve katot bu kadar basıncı kaldıracak şekilde tasarlanmamıştır. Bunun için, tanktan gelen yakıtın basıncı, iticiye ve katota ulaşana kadar belirli miktarlarda azaltılmalıdır. Bu basınç ayarlamaları yakıt kontrol birimi tarafından yapılır. Bu birim; tank, doldurma boşaltma valfi, basınç dönüştürücü, akış kontrol valfi, Oransal / Entegre kontrolörü (İng. Proportional Integral Controller), ağızlar (İng. Orifice) ve tüplerden oluşmuştur. 300 km yükseklikte, gerekli yakıt miktarı 11,9652 kg'dır. Bu yakıtı depolamak için gereken tank basıncı Denklem 37'den 82 bar ve tank kütlesi Denklem 38'den 1,107 kg olarak hesaplanmıştır. Doldurma boşaltma valfi, uydu yerdeyken depolama tankını yakıt ile doldurur. Doldurma boşaltma valfi olarak, 600 gramdan daha düşük bir kütleye sahip yüksek basınçlı Ksenon valfi seçilmiştir. Tanktaki yakıt, iticiye ve katota tüpler aracılığıyla iletilir. Tanktan gelen tüpe bağlı basıncı ölçmek için yüksek basınç dönüştürücü kullanılmıştır. Basınç dönüştürücü yakıtın basıncını ölçer. 55 g'dan daha küçük kütleye ve basınç aralığı 3,4-345 bar olan bir yüksek basınç dönüştürücü seçilmiştir. Yakıt, daha sonra, basıncın avarlanmasını sağlayan akış kontrol valfine (AKV) gelir. AKV için akış modundaki giriş basıncı aralığı 2,8-186 bar çıkış basıncı aralığı 0-2,8 bar olan bir valf seçilmiştir. AKV, elektrik itki alt sistemi çalışmadığında normalde kapalıdır. Buradan çıkan akışın basıncı, bu kez düşük basınç dönüştürücüsü tarafından ölçülür. Düşük basınç dönüştürücü için, 255 g'dan daha küçük bir kütleye sahip,1,03 bara kadar düzenleme yapan bir basınç dönüştürücü seçilmiştir. Bu dönüştürücü kapalı döngüyle, AKV'den çıkan akışın Oransal / Entegre Kontrolöre geri bildirimini sağlar. Oransal / Entegre kontrolörü, giriş başınçları aralığı boyunca gerekli basıncı sağlamak için AKV 'ye giden akışı ayarlar [Barbarits ve King, 2006]. AKV 'den gelen yakıtın kütle akıs hızını ayarlamak için, iticiye ve katota gelen tüplerde ağızların kullanılması planlanmıştır.

Tüplerin ve ağızların tahmini kütle bütçesi üzerine araştırma yapılmış ve tahmini kütleler sırasıyla 250 g ve 50 g olarak kabul edilmiştir.

Şekil 17 Yakıt Depolama ve Kontrol Birimi Tasarımı

Mikro Uydu'nun 3 yıllık görev ömrü boyunca 300 km'deki görevini yerine getirebilmesi için tasarlanan itki alt sisteminin toplam kütle bütçesi ve güç bütçesi Tablo 35'te verilmiştir.

Ekipman	Kütle (kg)	Güç (W)
İtici	0,45	300
Katot	0,2	25
Güç İşleme Birimi	6,5	30
Yakıt Tankı	1,107	-
Yakıt	11,9652	-
Doldurma Boşaltma Valfi	0,6	-
Yüksek Basınç Dönüştürücü	0,055	0,2
Düşük Basınç Dönüştürücü	0,255	0,1
Akış Kontrol Valfi	0,115	1,5
Tüpler ve Ağızlar	0,3	-
Toplam	21,5	357

Tablo 35 İtki Alt Sistemi Kütle ve Güç Bütçesi

Yönelim Belirleme ve Kontrol Alt Sistemi (YBKS)

Bu bölümde, Yönelim Belirleme ve Kontrol alt sistemine ait gereksinimler göz önüne alınarak hesaplamalar yapılmıştır. Hesaplamalar sonucu ekipman teknik özellikleri belirlenerek ön kavramsal analizi gerçekleştirilmiştir.

Dikdörtgenler prizması olarak modellenen Mikro Uydu'nun eylemsizlik matrisi $I_o \in R^{3x3}$ *O* merkezli olup Denklem 43-48 kullanılarak aşağıdaki gibi hesaplanmıştır.

 $I = \begin{bmatrix} 41,6667 & 0 & 0 \\ 0 & 41,6667 & 0 \\ 0 & 0 & 16,6667 \end{bmatrix} kgm^2$

Hesap sonucu bazı parametrelerin 0 gelmesinin nedeni, uydunun yoğunluk dağılımının henüz netleşmemiş olmasıdır. Bu nedenle, yoğunluk integralden sabit bir sayı olarak çıkar ve nihai sonuç 0 olmaktadır. Alt sistemlerin uydu içerisindeki yerleşimleri belirlendikten sonra katı çizim modeli üzerinden yoğunluk dağılımının hesaplanması ve gerçekleştirilen analizlerin güncellenmesi hedeflenmektedir.

Yöntem bölümünde bahsedilen pertürbasyonlar Denklem 49-56 kullanılarak 300 km ve 350 km yörünge irtifaları göz önüne alınarak hesaplanmış ve aşağıdaki sonuçlara ulaşılmıştır:

	300 km	350 km	Birim	Pertürbasyonlar
Tg	1,75E-06	1,71E-06	Nm	Yer çekimi
h _g	1,68E-03	1,64E-03	Nms	Gradyanı
Ts	2,35E-06	2,35E-06	Nm	
hs	1,13E-03	1,13E-03	Nms	Guneş Basıncı
Ta	2,48E-04	2,48E-04	Nm	Atmosferik
ha	2,38E-01	2,38E-01	Nms	Sürüklenme
T _m	2,49E-05	2,43E-05	Nm	Manuatik Alan
h _m	2,39E-02	2,34E-02	Nms	Manyelik Alah
∑ Tork	2,77E-04	2,76E-04	Nm	Taplam
∑ Momentum	2,65E-01	2,64E-01	Nms	ropiam

Tablo 36 Farklı Yörüngelerdeki Pertürbasyon Değişiklikleri

Kabuller

A_r	:	$3,22 m^3$
$c_{pa} - c_m$:	0,05 m
C _d	:	2
ρ	:	$2,58e - 11 kg/m^3$
D	:	$0,5 m^2 A$
В	:	4,98e – 5 T

Literatür araştırması sonucunda, kütle ve çeviklik kısıtları göz önüne alınarak 0,07 Nm torka sahip olan tepki tekerleri hesaplamalarda kullanılmıştır.

Hesaplamalar sonucunda, tetrahedral yapılandırma kullanıldığında tork 2 katına çıkmaktadır. Denklem 58'in çözümlenmesi ile çeviklik teorik olarak sn biriminden aşağıdaki gibi gelmektedir (Uydu 1 derece döndükten sonra, hareketine devam etmektedir).

$$T = 0,07 - 2,77E - 4 = 0,069 Nm$$

$$t = \sqrt{4\theta \frac{I}{2T}} = 4,57 \frac{sn}{derece}$$

Algoritma 1'in çözümlenmesiyle birlikte, bazı sınırlamalar kabul edilerek (uydunun 1° dönmesiyle sabit kalması ve tek tepki tekeri) gerçek sonuç aşağıdaki gibi gelmektedir.

$$t = 9,08 \frac{sn}{derece}$$

Algoritma 1, Mikro Uydu'nun 10° dönmesi ve 10° dönüşünü tamamlayarak durması için gereken zaman, tetrahedral tepki tekeri yapılandırması kullanılarak hesaplandığında çıkan sonuç ise aşağıdaki gibidir.

$$t = 20,35 \frac{sn}{10 \text{ derece}}$$

Denklem 42 kullanılarak, seçilmesi planlanan tepki tekerinin momentum hesaplaması, 3 temel eksene göre yapılmıştır. Tablo 36 ve Denklem 42 dikkate alınarak Mikro Uydu'nun gerekli momentum ihtiyacına göre manyetik tork çubuğu seçimi yapılmıştır.

Denklem 59-71 kullanılarak tersine mühendislik yöntemiyle yıldız izler ve KKS seçimleri yapılmıştır.

Coğrafi Konum Doğruluk Bütçesi ve İşaret Doğruluğu Bütçesi: YBKS için 2 temel gerekliliği elde etmek için 2 farklı analiz yapılmıştır. İşaret, uzay aracını, sensörleri vb. ekipmanları belirli bir coğrafi konuma yönlendirmek anlamına gelir. Haritalama ise sensörlerin veya antenin bakış noktasının coğrafi konumunun ne kadar hatalı belirtir.

Denklem 59-71'in çözülmesiyle yapılan analiz sonucu elde edilen hesaplamalar tablo 37'de gösterilmektedir.

Uydu Yöne	Coğrafi Konum Hatası (km)	İşaretleme Hatası (derece)						
Yönelim Hataları								
Azimut Ư	0,00056	Derece	0,0010082	0,000				
Nadir Açısı ∆η 0,00056		Derece	0,0032845	0,001				
Konum Hataları								
Paralel-İz "∆I"	0,0035	Km	0,0033428	0,001				
Çapraz-İz "∆C"	0,0035	Km	0,0033423	0,001				
Radyal ∆Rs	0,0035	Km	0,0012167	0,000				
	Diğer	Hatalar						
Hedef Yüksekliği ∆Rt	Km	0,0003640	-					
Uzay Aracı Saati ∆T 1,00E-06 Saniye			0,0000004	0,0000				
Kare Ortalamalarının Ka	arekökü		0,0059	0,001				

Tablo 37 Haritalama ve İşaretleme Hatalarının Bütçelendirmesi

Tablo 37'de görüldüğü üzere, analiz sonuçları coğrafi konum hatası 5,98 m ve işaretleme hatası 0,001° olarak hesaplanmıştır. Bu sonuçlar, gereksinimleri karşılamaktadır.

Ekipmanlar ve Hata Yüzdeleri: Kısıtlamalar ve isterler dikkate alınarak ekipman seçimi yapılmıştır. YBKS için temel gereklilikler, başlıca uydunun sonlu sürede 10°'lik çevikliğe ve 10 m'nin altında coğrafi konum doğruluğuna sahip olmasıdır. YBKS sistemi tasarlanırken dikkat edilen temel zorluklar sınırlı alan, kütle, güç ve en önemli sorun olan zamandır. Bu limitler dikkate alınarak optimum YBKS sistemi tasarlanmıştır. YBKS, 1 adet çift kafalı yıldız izler, 3 adet manyetik tork çubuğu, 1 adet küresel konumlama sistemi, 1 adet küresel konumlama sistemi anteni ve 4 adet tepki tekeri içerir. Ekipman listesi Tablo 38'de gösterilmiştir.

Ekipman Adı	Birim Kütle (g)	Birim Güç (W)	Parça Sayısı	Toplam Kütle (kg)	Toplam Güç (W)
Tepki Tekeri	950	10	4	3,8	40
MTÇ*	600	4,2	3	1,8	12,6
Yıldız İzler	250	1	2	0,5	2
KKS**	225	10	1	0,225	10
KKS Anteni	18	0,0475	1	0,018	0,0475
Toplam	2043	25	11	6,3	65

Tablo 38 YBKS Alt Sisteminin Donanımı

* MTÇ: Manyetik Tork Çubuğu

** KKS: Küresel Konumlama Sistemi

YBKS alt sistem donanımlarının, kütle ve güç bütçelerinin çıkartılmasıyla birlikte, ana sınırlayıcılar olan kütle ve güç sınırlarının altında kalınmıştır. Toplam Kütle, 6,3 kg < 8 kg olurken, toplam güç, 65 W < 100 W olarak elde edilmiştir.

Bu ekipmanlar Tablo 39'da gösterilen hatalara sahiptir. Bunlar imalat hatası veya özelliklerinden kaynaklanabilir. Seçilen ekipmanlar için üretim kaynaklı hatalar Tablo 39'da gösterilmiştir [ESA, 2011].

Ekipman Adı	Doğruluk (Hatalar)
Tepki Tekeri	Mikro titreşimler, üretim hatası
Manyetik Tork Çubuğu	Üretim hatası
Yıldız İzler	2'' (1\sigma), yanlış hizalama
KKS	≤3,5m, ≤0,1m/s, ≤1µs (RMS)

інк

e_{s1}

Tip

Tablo 39 Ekipmanların Doğruluğu

Şekil 18'de ve Tablo 40'ta, hata kaynakları gösterilmiştir.

Şekil 18 İşaret Hata Kaynakları

* İHK – İşaretleme Hata Kaynakları

e_{s2} μTitreşimler (kontrol bant genişliği dısında)

- 02	dışında)
e _{s3}	Tepki tekeri hataları
e _{s4}	Harici pertürbasyonlar
e _{s5}	Yıldız izler hataları

Tablo 40 İşaret Hata Kaynaklarının Anlamları

Görev yükü-yıldız izler yanlış hizalamaları

Ekipman Konfigürasyonu: Konfigürasyon adımında, tepki tekerleri tetrahedral konfigürasyon dikkate alınarak yerleştirilmiştir. Manyetik tork çubukları her eksene birer tane olacak şekilde yerleştirilmiştir. KKS ve KKS anteni yanal yüzeylerden, ağırlık dengesi düşünülerek yerleştirilmiştir. Yıldız izlerler, Güneş ile etkileşime girmemesi gerektiği için Mikro Uydu'nun yanal yüzeylerine konumlandırılmıştır. YBKS ekipmanları ve YBKS alt sistem konfigürasyonu Şekil 19'da gösterilmiştir.

Şekil 19 YBKS Alt Sisteminin Konfigürasyonu

Şekil 20 Yıldız İzler

Şekil 22 KKS

Şekil 23 KKS Anteni

Şekil 24 Manyetik Tork Çubuğu

Haberleşme Alt Sistemi

Bu bölümde, Haberleşme Alt Sistemine ait gerekli bağlantı hesapları yapılacaktır. Haberleşme Alt Sistemi Gereksinimleri bölümündeki maddelere göre, S bant yer-uydu bağı bağlantı bütçesi, S bant uydu-yer bağı bağlantı bütçesi, X bant uydu-yer bağlantı bütçelerinin hesaplamaları yapılacaktır. Ayrıca X bant için, veri hızı hesaplamaları yapılacaktır.

S bant Yer-Uydu Bağlantı Hesaplamaları

Bu bölümde, Uzay Kesimi bölümündeki EIRP (Etkin İzotropik Yayılan Güç) değerleri hesaplanacaktır. Ardından, atmosferik kayıplar hesaplanacaktır. Ardından bu hesaplamalara göre ekipman seçimi yapılacaktır. İlk olarak gereksinimler bölümünden istenilen BER (Bit Hata Oranı) değeri için gerekli E_b/N₀ (dB cinsinden sinyalin gürültüye oranı) belirlenir.

Denklem (59) ve denklem (60) kombinlenerek aşağıdaki sonuçlara ulaşılır.

$$BER = 6,05x10^{-8}$$
 değeri için gerekli $E_b/N_0 = 14$ dB

Burada, BER değerinin 10^{-7} 'den küçük olmasına dikkat edilmelidir. (Gereksinimler bölümü 4.madde)

Daha sonra denklem (61) kullanılarak, Mevcut E_b/N_0 değeri için hesaplamalar başlanmalıdır.

$$\begin{aligned} Bağlantı \ Marjini &= (Mevcut \frac{E_b}{N_0} - Gerekli \frac{E_b}{N_0}) \geq 0\\ Gerekli \ E_b / N_0 &= 14 \Rightarrow Mevcut \frac{E_b}{N_0} \geq 14 \ dB \end{aligned}$$

Buradan, sistemin sahip olması gereken mevcut E_b/N_0 değerinin 14 dB den büyük olması gerektiği bulunur. Daha sonra Gerekli E_b/N_0 ı denklem (62) kullanılarak açılırsa aşağıdaki eşitsizlik elde edilir:

$$Alıcı\frac{C}{N_0} - Kullanıcı veri hızı \ge 14$$

Alıcı C/N_0 , dB-Hz cinsinden ifade edilir ve taşıyıcının gürültü yoğunluğuna oranı olarak tanımlanır. Alınan sinyaldeki gürültü miktarı göz önüne alındığında, bir alıcının taşıyıcıya kilitlenip kilitlenemeyeceğini ve sinyalde kodlanan bilginin geri getirilip getirilemeyeceğini belirler.

Gereksinimler kısmının 5. maddesine göre, istenilen veri hızı 1 Mbps olmalıdır. Bunu dB-Hz birimine çevirmek için 10 tabanına göre logaritması alınmalıdır.

Veri hızı = 1 Mbps veya
$$10Log_{10}(1x10^3) = 60 dB - Hz$$
 olarak bulunur.

Veri hızı dB-Hz olarak bulunduktan sonra, $Alici \frac{C}{N0}$ değerinin sahip olması gereken minimum değer 74 dB-Hz olarak bulunur.

$$Alici\frac{C}{N0} \ge 74 \ dB - Hz$$

Daha sonra, $Alici \frac{c}{N0}$ denklem 69 kullanılarak açılırsa aşağıdaki eşitsizlik elde edilir:

$$EIRP(dBW) - Kayıplar(dB) + \frac{G}{T}\left(\frac{dB}{K}\right) + 228,6\frac{dBW}{K-Hz} \ge 74$$

Burada 228,6 $\frac{dBW}{K-Hz}$ boltmans sabiti olarak bilinir. Alış anteninin kazancı ile alıcı sıcaklığının, genellikle alıcı değeri olarak adlandırılan bir oran olarak gruplandırıldığı unutulmamalıdır. (G/T). Bu bağlantı bütçesinde, hesaplamalarda kullanılacak Kazanç değerleri Profen şirketi (MIYEG) tarafından yapılan Türkiye Milli Yer İstasyonu tarafından sağlanmıştır. Bu yer istasyonunun bilgisi, THK Mikro Uydu Projesi kapsamında, Nuri Hacıçavuşoğlu ve Fatih Mehmet Engin'in katkılarıyla alınmıştır. Burada P_t vericinin çıkış gücünü (dBm), L_c kablo kaybını(dB), G_a anten kazancını temsil etmektedir.(dBi) Bu bağlantı bütçesi, yer-uydu bağı

için yapıldığından, formülde kullanılacak verici gücü, yer istasyonunda kullanılacak vericidir. S bandı için yer istasyonunun özellikleri aşağıdaki tabloda verilmiştir.

Anten Çapı	7,3-metre karbon fiber
Anten Tipi	Cassegrain tasarımı
Çalışma Frekansı	2000-2400 MHz (S bant için)
S Bant Kazancı	42,95 dBi @2200 MHz
S Bant G/T	20,85 dB/K
S Bant Verici Gücü (TÜBİTAK Tarafından Üretilen Verici)	100 Watt

Tablo 41 S Bant İçin Milli Yer İstasyonunun Özellikleri

Yukarıdaki tablodaki değerler, denklem (70)'e koyulduğunda aşağıdaki EIRP değeri elde edilir:

$$EIRP(dB) = 10 * (100) + 42,95 - 5 = 57,95 \, dbW$$

Kablo kaybı -5 dB olarak kabul edilmiştir.

S bant Kayıplar:

Toplam kayıpları hesaplamak için denklem (63) kullanılabilir. İlk olarak 2200 MHz frekans için yol kaybı bulunur. Yol kaybını bulmak için menzilin belirlenmesi gerekmektedir. 300 km irtifaya sahip ve 10 derecelik yükseklik açısı, denklem (65)'de yerine konulduğunda aşağıdaki menzil değeri bulunur.

Burada her kayıp ayrı ayrı hesaplanacaktır. Yol kaybı aşağıdaki denklem ile hesaplanabilir:

$$Yol \ kaybi(dB) = 32,45 + 20(f_{MHz}) + 20(Menzil_{km})$$

 $f_{MHz} = 2200 \text{ MHz} (\text{Tablo 41})$

Menzili bulmak için denklem (65) kullanılabilir:

 $Menzil = \sqrt{6378^2 + (6378 + 300)^2 - 2 * 6378 * (6378 + 300) * \cos(10)} \text{ km}$

Menzil=1160,4 km

Burada, r Dünya'nın yarıçapını (6378 km), h uydunun dünya üzerindeki yüksekliği, el ise uydunun irtifa açısını temsil etmektedir.

h ve el değerleri gereksinimler bölümünün 6. ve 7.maddelerinden alınmıştır. Bu maddelere göre minimum yükseklik açısı 10 derece, uydunun yüksekliği ise 300 km olarak alınır. Daha sonra 2200 MHz'lik frekans ve hesaplanan menzil değeri denklem (69)'un içine koyulursa Yol kaybı aşağıdaki şekilde elde edilir;

$$Yol \ kaybi = 32,45 + 202200 + 201160,4 = 160,59 \ dB$$

Atmosferik Kayıplar

Atmosferik kayıplar, atmosferik soğurma ve yağmur nedeni ile oluşan zayıflama etkilerinin toplamı olarak hesaplanabilir. Aralarındaki en önemli fark, atmosferik soğurma her zaman etki ederken, yağmur zayıflatması yağmurun şiddetine göre etki etmektedir. Bu nedenle atmosferik kayıplar, atmosferik soğurma ve yağmur zayıflatması olarak iki ayrı bölümde hesaplanacaktır.

Atmosferik Soğurma

Uluslararası Telekomünikasyon Birliği (ITU) tarafından tanımlanan oksijen ve suyun yaklaşık olarak zayıflatma sabitleri dB/km cinsinden şu şekilde ifade edilir [Hum, 2017]:

$$a_o = \begin{cases} 0,001 \left[0,00719 + \frac{6,09}{f^2 + 0,227} + \frac{4,81}{(f - 57)^2 + 1,50} \right] f^2 & f < 57 \ GHz \\ a_0(57GHz) + 1,5(f - 57) & f \ge 57 \ GHz \end{cases}$$

$$a_w = 0,0001 \left[0,050 + 0,0021\rho + \frac{3,6}{(f-22,2)^2 + 8,5} + \frac{10,6}{(f-183,3)^2 + 9} + \frac{8,9}{(f-325,4)^2 + 26,3} \right]$$
(72)

Burada a_0 oksijenin zayıflatma katsayısı, a_w suyun zayıflatma katsayısı, ρ suyun öz kütlesi (genellikle deniz seviyesi için 7,5 g/m^3 olarak ölçülür) ve f GHz cinsinden frekansı temsil etmektedir. (GHz)

f değeri denklemlerde 2,2 GHz olarak yerine konulduğunda aşağıdaki ifadeler elde edilir:

$$a_o = 0,0058 \frac{dB}{km}$$
 ve $a_w = 7,49 * 10^{-6} \left(\frac{dB}{km}\right)$

Genel olarak zayıflatma sabitleri basınç ve sıcaklık gibi faktörlere bağlı olduğundan, bu zayıflatmalar yüksekliğin (h) fonksiyonudur. Bu zayıflatmaların genellikle yükseklik ile katlanarak değiştiği varsayılır.

$$\rho(h) = \rho_0 e^{-\frac{h}{h_s}} \quad (73)$$

Burada h_s ölçek yüksekliği olarak, h yer istasyonunun yüksekliği olarak ifade edilir. Etimesgut için yükseklik (h) değeri 1,1 km olarak bilinmektedir. Ölçek yüksekliği ise şu denklem ile hesaplanabilir:

$$h_s = RT/G \quad (74)$$

Burada R_{air} hava için özgül gaz sabiti $(\frac{J}{kg.K})$, T ortalama atmosfer sıcaklığı (K), g ise yer çekimi ile oluşan ivmeyi temsil etmektedir. (m/s^2)

$$R_{air} = 287 \frac{J}{kg.K}$$
 $T = 283 K g = 9,81 \frac{m}{s^2}$ ve $h_s = 8,280 km$

Sabit sayılar belirlendikten sonra, zayıflatma, yükseklik fonksiyonu olarak aşağıdaki denklem ile yaklaşık olarak modellenebilir:

$$a_a(h) = a_{a0}e^{-\frac{h}{h_s}}$$
 (75)

Burada a_{a0} deniz seviyesindeki zayıflatma sabiti olarak tanımlanır ve Oksijen zayıflatması ile Suyun zayıflatma sabitinin toplamı olarak belirlenir.

$$a_{a0} = 0,0058 + 7,49 * 10^{-6} = 5,808 * 10^{-3} dB/km$$

Daha sonra uydu ile yer istasyonu arasında kurulacak bağlantının eşdeğer dikey yol uzunluğu ($L_{a,eff}$) belirlenmelidir.

$$L_{a,eff} = h_s e^{-\frac{h_0}{h_s}} \Rightarrow L_{a,eff} = 7,250 \ km \ (76)$$

49 Ulusal Havacılık ve Uzay Konferansı Herhangi bir açı ile oluşan eğik atmosferik yollar için, atmosferik soğurma aşağıdaki şekilde gösterilen geometri yardımı ile veya denklem (99) ile bulunabilir.

$$A_a = \int_{h_0}^{\infty} a_{a0} e^{-\frac{z}{h_s}} \csc \theta dz = a_{a0} L_{a,eff} \csc \left(\theta\right)$$
(68)

Burada A_a is toplam atmosferik soğurmayı θ ise yükseklik açısını temsil etmektedir. (En kötü koşullar için bu değer 10 derece olarak alınmıştır) Daha sonra denklem (68) kullanılarak toplam atmosferik soğurma 0,238 dB olarak bulunur.

Şekil 25 Ölçek yüksekliği ve eğimli yol

Daha önce de belirtildiği gibi, S bant frekansı, dalga boyu nedeniyle atmosferik kayıplardan etkilenmez. Ek olarak, atmosferik absorpsiyonun yaklaşık değeri (deniz seviyesi için) aşağıdaki şekilde görülebilir. Bu şekle göre A_a yaklaşık 0,2 dB olarak okunur. Atmosferik emilimden sonra, yağmur zayıflamasını hesaplamak gerekir. Yağmur kayıpları, yağmur şiddetine göre değişkenlik gösterebilir ve bu yağmur koşulları bağlantı bütçelerinde belirleyici faktörlerden birisidir. İyi ve kötü hava koşulları arasındaki bağlantı bütçesinde belirleyici faktörlerden biridir. Yağmur zayıflaması 3 farklı yağmur koşulu için ayrı ayrı hesaplanacaktır.

Şekil 26 Su Buharının 7,5 $\frac{g}{m^3}$ Yoğunluğuna Sahip Olduğu Zemin Seviyesinin Standart Atmosfer Koşulları Altında Frekans ve Yükseklik Açısının Bir Fonksiyonu Olarak Atmosferik Gazlardan Kaynaklanan Zayıflaması [Maral ve Bousquet, 2009]

Yağmur Zayıflatması

Yağmur zayıflaması yağmur hızının bir fonksiyonudur. Yağmur oranı, yağmur suyunun ilgili bölgede (örneğin bir yer istasyonunda) yer alan bir yağmur göstergesinde birikme oranı anlamına gelir. Radyo dalgası zayıflamasıyla ilgili hesaplamalarda, yağmur hızı saatte milimetre cinsinden ölçülür. Zaman yüzdesi genellikle bir yıldır; örneğin, yüzde 0,001 yağmur oranı, yağmur oranının bir yıl içinde yüzde 0,001'i veya bir yıl içinde yaklaşık 5,3 dakikayı aşacağı anlamına gelir. Bu durumda, yağmur oranı $R_{0,001}$ ile gösterilir. Genel olarak, yüzde süresi p ile ve yağmur hızı R_p ile gösterilir. Spesifik zayıflama, α ise şu şekilde hesaplanır:

$$\alpha = a R_p^b \frac{dB}{km}$$

Burada a ve b (Özgül zayıflatma katsayıları) frekans ve polarizasyona bağlıdır. Aşağıdaki şekilde belirli frekans değerleri için a ve b değerleri okunabilir.

Frequency, GHz	a_h	a_v	bh	b_v
1	0.0000387	0.0000352	0.912	0.88
2	0.000154	0.000138	0.963	0.923
4	0.00065	0.000591	1.121	1.075
6	0.00175	0.00155	1.308	1.265
7	0.00301	0.00265	1.332	1.312
8	0.00454	0.00395	1.327	1.31
10	0.0101	0.00887	1.276	1.264
12	0.0188	0.0168	1.217	1.2
15	0.0367	0.0335	1.154	1.128
20	0.0751	0.0691	1.099	1.065
25	0.124	0.113	1.061	1.03
30	0.187	0.167	1.021	1

Tablo 42 Özgül Zayıflatma Katsayıları

SOURCE: Ippolito, 1986, p. 46.

Özgül zayıflatma katsayıları S bant frekans değeri için tablo 42'den okunularak (2 GHz) toplam zayıflatma şu şekilde belirlenir:

$$A = \alpha L \, dB$$

Burada L, yağmur boyunca sinyalin etkili yol uzunluğudur.

Şekil 27 Yağmur Boyunca Yol Uzunluğu

Daha sonra etkili yol uzunluğu şu şekilde bulunur:

$$L = L_s r_p$$

Burada L_s eğik yolun uzunluğu, r_p ise redüksiyon faktörüdür. Redüksiyon faktörü yüzde süresine göre seçilir. Yukarıda verilen şekildeki geometriye göre L_s şu şekilde belirlenir: $L_s = (h_R - h_0)/\sin(El)$ (77)

$$L_G = L_s \cos{(El)}$$

Burada h_R yağmurun yüksekliği, h_0 yer istasyonunun yüksekliğini, L_G ise eğik yolun yatay izdüşümünü temsil etmektedir. Ayrıca El değeri 10 derece olarak alınmıştır. (En kötü ihtimal için) Aşağıdaki şekil, farklı iklim bölgeleri için h_R değerlerini göstermektedir. Yöntem 1 deniz iklimini, Yöntem 2 tropik iklimi, Yöntem 3 ise karasal iklimi göstermektedir.

Derece cinsinden Yer istasyonu' nun enlemi

Şekil 28 Farklı İklim Bölgeleri için Yer İstasyonu Enleminin Bir Fonksiyonu Olarak Yağmur Yüksekliği

p=%0,001 için	$r_{0,001} = \frac{10}{10 + L_G}$
p=%0,01 için	$r_{0,01} = \frac{90}{90 + 4L_G}$
p=%0,1 için	$r_{0,1} = \frac{180}{180 + L_G}$
p=%1 için	$r_1 = 1$

Tablo 43 Redüksiyon faktörü [Ippoito, 1986]

Yer istasyonu Ankara/Etimesgut bölgesinde olacağından dolayı h_0 değeri 1,1 km olacaktır. Ayrıca THK Üniversitesi'nin enlemi 39,947643 derece ve boylamı 32,842209 derece olacaktır.

Bu değerleri kullanarak h_R değeri şekil 28'den belirlenebilir. Ayrıca bu bağlantı bütçesi, 3 ayrı yağmur koşulu için p =0,1% değeri kullanılarak hesaplanacaktır.

Ankara, karasal bir iklime sahip olduğundan dolayı, şekil 28'de bulunan yöntem 3'ün değeri kullanılmalıdır.

Daha sonra h_R nin değeri figür 28'de yaklaşık olarak 4 km olarak okunur.

$$h_R \approx 4 \text{ km}, h_0 = 1,1 \text{ km}, El = 10 \text{ derece}$$

 h_R ve h_0 değerleri bulunduktan sonra, eğik yol uzunluğu ve eğik yolun yatay izdüşüm uzunluğu hesaplanabilir.

$$L_S = 16,70 \ km$$

 $L_G = 16,44 \ km$
 $r_{0.1} = 0,916$

Bu değerler bulunduktan sonra *R* değerinin değerleri belirlenmelidir. Bu değer (yağmur oranı) yağmurun şiddetine göre farklılık göstereceğinden dolayı, bu bağlantı bütçesi 3 farklı yağmur koşulları için ayrı ayrı hesaplanacaktır. Yağmur oranları, hafif yağmur, orta yağmur ve sağanak yağmur olarak üçe ayrılacaktır.

Tablo 44 Yağmur oranı [Met Office, 2007]

Yağmur şiddeti	Yağmur oranı (<i>mm/saat</i>)
Kapalı hava	< 2,5 mm/saat
Yağışlı hava	2,5 ile 10 <i>mm/saat</i> arası
Sağanak yağmur	10 ile 50 <i>mm/saat</i> arası

Bu bilgilere göre, yağmur hesaplamaları aşağıdaki değerler için ayrı ayrı hesaplanacaktır:

R=2 mm/saat (Kapalı hava için),

R=7 mm/saat (Yağışlı hava için),

R=25 mm/saat (Sağanak yağmur için)

Bu bağlantı bütçesi dairesel polarizasyon ile oluşturulacağından dairesel polarizasyon sonuçları kullanılacaktır. Dairesel polarizasyon için zayıflama katsayılarının formülleri şu şekildedir:

$$a_c = (a_h + a_v)/2$$
 $b_c = \frac{a_h b_h + a_v b_v}{2a_c}$ (78)

Daha sonra tablo 42 kullanılarak a_h, a_v, b_h, b_v değerleri alınır ve bu değerlere göre dairesel polarizasyon için zayıflama katsayıları belirlenir.

a_h	0,0000154
a_v	0,000138
b_h	0,963
b_{v}	0,923
a_c	$1,46 \ x \ 10^{-4}$
b_c	0,94

Tablo 45 Dairesel Polarizasyon için Zayıflama Katsayıları

Daha sonra denklem (67) kullanılarak, farklı R değerleri için yağmur zayıflaması elde edilir.

R = 2 mm/saat için: (Kapalı hava)	$A = 4,28x10^{-3} dB$
R = 7 mm/saat için: (Yağışlı hava)	$A = 0,0139 \ dB$
R = 25 mm/saat için: (Sağanak yağmur)	$A = 0,0460 \ dB$

Tablo 46 Farklı R Değ	jerleri için Yağmuı	[.] Zayıflaması
-----------------------	---------------------	--------------------------

Aşağıdaki tabloda S bant frekansı için farklı yağmur koşullarına göre toplam kayıplar gösterilmiştir.(Yükseklik açısı 10 derece olarak alınmıştır.) Bu tabloda görülebileceği üzere, Yol Kaybı, toplam kayıbı önemli ölçüde etkilemektedir. Fakat S bant, sahip olduğu frekansının dalga boyu nedeni ile atmosferik soğurma ve yağmur zayıflatmasından çok fazla etkilenmemektedir. Solma marjı, sistem performansının belirtilen bir eşik değerinin altına düşmesine neden olmadan alınan bir sinyal seviyesinin azaltılabileceği miktardır. Yani bu 3 dB lik kayıp, bağlantı bütçesini garantiye almak için kullanılır. Bu görev için solma marjı 3 dB olarak kabul edilecektir. (Tipik değer) ve uydudaki hat kaybı 1,5 dB olarak kabul edilecektir. Daha sonra tüm kayıplar belirlendikten sonra toplam kayıp denklem (63) kullanılarak hesaplanabilir.

	Atmosferik Soğurma	Yağmur Zayıflatması	Yol Kaybı	Sönme Marji	Kablo Kayıpları	Toplam Kayıp
Açık hava	0,238 d <i>B</i>	$4,28 * 10^{-3} dB$	160,59 <i>dB</i>	3 dB	1,5 <i>dB</i>	165,33 <i>dB</i>
Yağışlı hava	0,238 d <i>B</i>	0,0139 d <i>B</i>	160,59 <i>dB</i>	3 dB	1,5 <i>dB</i>	165,34 <i>dB</i>
Sağanak yağmur	0,238 d <i>B</i>	0,0460 d <i>B</i>	160,59 <i>dB</i>	3 dB	1,5 <i>dB</i>	165,37 <i>dB</i>

Tablo 47 S Bant için Toplam Kayıplar

Toplam Kayıp= 165,37 dB (Sağanak yağmur için)

EIRP =57,95 dBW, Toplam Kayıp = 165,37 dB ve $\frac{c}{N0}$ > 74 eşitsizliği denklem 69'da kullanılarak *G*/*T* değeri için aşağıdaki eşitsizliğe ulaşılır.

$$57,95 \ dBW - 165,37 \ dB + \frac{G}{T} \left(\frac{dB}{K}\right) + 228,6 \frac{dBW}{K - Hz} > 74$$
$$\frac{G}{T} \left(\frac{dB}{K}\right) > -47,18$$
$$\frac{G}{T} = Anten \ kazancı(dB) - Sistem \ gürültü \ sıcaklığı (K) (71)$$

Anten kazancı(dB)_{uvdu} – Sistem gürültü sıcaklığı_{uvdu} > -47,18

G/T değeri, yer-uydu bağlantı bütçesi hesaplandığından dolayı Uydu'nun ekipmanlarına göre seçilmesi gerektiğine dikkat edilmelidir. Sistemin gürültü sıcaklığı yüksek olacağı için, uyduda, gürültü figürü düşük olan bir LNA (Düşük gürültülü amplifikatör) kullanılmalıdır. Gürültü figürü 0,4 olan bir LNA ekipmanı seçilecek olursa, gürültü sıcaklığı aşağıdaki denklemden hesaplanabilir.

$$NF = 10\left(\frac{T_{noise}}{T_{ref}} + 1\right) \Rightarrow T_{noise} = 27,98 \ K \ (79)$$

Burada T_{ref} referans sıcaklığını temsil etmektedir ve genellikle 290 K olarak kabul edilir. NF, gürültü figürünü, T_{noise} gürültü sıcaklığını temsil etmektedir. Bu değeri ekipmandan elde ettikten sonra, anten kazancı elde edilmelidir.

S bant yer uydu bağlantısında kullanılacak olan anten, çok yönlü bir anten olarak seçilmiştir. Çok yönlü antenlerin kazancı genellikle 0 ile 5 dB arasında değişmektedir. 0 dB kazanca sahip bir S bant anteni kullanılırsa, G/T değeri aşağıdaki gibi hesaplanabilir:

$$\frac{G}{T} = 0 - 27,98 = -27,98 \, dB/K$$

 $\frac{G}{T}$ değerinin -27,98 db/K olduğunu, ve -47,18 db/K değerinden büyük olduğuna dikkkat edilmelidir. -27,98 db/K değeri, belirtilen alt sınırdan büyük olduğundan dolayı, bu ekipmanlar uydu için kullanılabilir.

Daha sonra denklem (69) kullanılarak C/N_0 değeri hesaplanabilir:

$$\frac{C}{N_0} = 93,2 \text{ dB-Hz}$$

Daha önceden C/N_0 değerinin 74 dB-Hz den büyük olması gerektiği hesaplanmıştı. Seçilen ekipmanlar ile oluşan C/N_0 değeri ise 93,2 dB-Hz olarak bulunmuştur. Sonuç olarak, seçilen yer istasyonu ve frekans için, uydunun ekipmanları bu bağlantı bütçesini karşılamaktadır.

Denklem 62' den *Mevcut* E_b/N_0 değeri 33,2 dB olarak bulunur. Daha sonra denklem (61) den bağlantı marjini hesaplanır:

Bağlantı marjinin kötü koşullarda bile 0'dan büyük çıkmasından dolayı (Kötü hava koşulları ve yükseklik açısının 10 derece olmasına rağmen) seçilen ekipmanlar ile (MIYEG yer istasyonu, uydu için seçilen LNA, uydu için seçilen S bant anten) kurulan bu bağlantı bütçesi bağlantı bütçesi başarı ile tamamlanmıştır. Bağlantı marjinini 0'a yaklaştırmak için ekipmanlar üzerinde değişikliğe gidilmesi mümkündür. (Daha az enerji tüketen ve daha hafif ekipmanlar gibi)

S Bant Uydu-Yer Bağlantı Hesaplamaları:

Bu bölümde S bant uydu-yer bağlantı bütçesi yapılacaktır. Bu bağlantı bütçesi yapılırken, S bant yukarı bağlantısında kullanılan aynı denklemler kullanılacaktır. Fark olarak, EIRP değeri ve G / T değerleri değişecektir. Yer-uydu bağı kısmında EIRP değeri yer istasyonunun ekipmanına göre, G / T değeri ise uydu ekipmanlarına göre hesaplanmıştı. Uydu-yer bağlantı bütçesinde ise EIRP değeri uydunun donanımına göre hesaplanacak ve G/T değeri yer istasyonunun donanımına göre hesaplanacaktır. G/T değeri yer istasyonunun ekipmanına göre hesaplandığından, Profen şirketi tarafından sağlanan G/T değeri doğrudan kullanılabilir. Frekans ve uydunun yüksekliği aynı olacağından, atmosferik kayıplar aynı kalacaktır. (Yer-uydu bağlantı bütçesinde hesaplanan atmosferik kayıplar kullanılacaktır) Ayrıca, BER değeri ve veri hızı da aynı olacağından, gerekli E_b/N₀ değeri aynı kalacaktır.

Tablo 40'a göre, G/T = 20,85 dB/K olarak alınır. (Bu değer Yer-uydu bağlantı bütçesinde ekipmanlara göre hesaplanmıştı. Uydu-yer bağı bağlantı bütçesinde bu değer yer istasyonunun ekipmanlarına göre hesaplanır. Yani Tablo 41'de Profen firması tarafından sağlanan G/T değeri kullanılmalıdır)

Gerekli E_b/N_0 =14 dB (Bu değer BER = 10^{-7} için yer-uydu bağlantı bütçesinde hesaplanmıştır)

Denklem (61), denklem (62), ve 1 Mbps veri hızı kullanılarak aşağıdaki eşitsizlik elde edilir:

Alici $C/N_0 \ge 74$

S bant yer-uydu bağlantı bütçesinin toplam kayıpları 165,37 dB (Sağanak hava için) olarak hesaplanmıştı. Daha sonra tablo 20 den $\frac{G}{T} = 20,85 \ dB/K$ olarak alınır. Bu değerler denklem (65) de yerine konulduğunda, EIRP için aşağıdaki eşitsizlik elde edilir.

Denklem 69'dan:

$$74 < EIRP(dBW) - 165,37(dB) + 20,85\left(\frac{dB}{K}\right) + 228,6\frac{dBW}{K - Hz}$$
$$EIRP(dBW) > -10.08$$

Görülebileceği üzere EIRP değerinin -10,08 dbW den daha büyük olması gerekmektedir. Daha fazlasını elde etmek, kütle ve enerji kaybına yol açacaktır.

Denklem (70)'den

 $EIRP(dBW) = P_t - L_c + G_a$

Burada P_t uyduda kullanılacak olan vericinin çıkış gücünü (dBm), L_c kablo kaybını (dB), G_a ise uyduda kullanılacak olan antenin kazancını (dBi) temsil etmektedir.

Bu bağlantı bütçesi uydu-yer bağlantısı için yapıldığından dolayı, formülde kullanılacak olan verici çıkış gücü, uyduda kullanılacak olan vericinin çıkış gücü olacaktır.

$$P_t - L_c + G_a \ge -10,08 \text{ ve } L_c = 5 \text{ dB}$$

 $P_t + G_a \ge -5,08$

Uydu üzerinde kullanılacak olan verici ve anten, denklem yukarıdaki eşitsizliği karşılayacak şekilde seçilecektir. Eğer 0 dB kazanca sahip bir S bant telemetri anteni kullanılacak olursa ($G_a = 0 dB$), bu eşitsizlik şu hale gelir:

$$P_t \ge -5,08$$
 haline gelir.

Yukarıdaki eşitsizlikten görülebileceği üzere, düşük güçlü bir verici seçilmesi daha uygun olacaktır. Eğer 0,5 Watt çıkış gücüne sahip bir verici kullanılırsa (Çıkış gücü değeri 0,5 Watt' tan daha az olan bir verici bulunamadığından, 0,5 Watt değeri kullanılmıştır. Daha düşük çıkış gücüne sahip vericilerde kullanılabilir) EIRP(dB) hesabı aşağıdaki gibi yapılabilir:

$$P_{t} = 0.5$$
 Watt

$$EIRP = 10 * (0,5) + 0 - 5 = -8,01 \, dBW$$

Daha sonra denklem (69) ile C/N_0 değeri hesaplanabilir:

$$\frac{C}{N_0} = 76,07 \ dB - Hz$$

Denklem (62) kullanılarak: $Mevcut \frac{E_b}{N_0} = 16,07 \ dB \ ve \ Gerekli \frac{E_b}{N_0} = 14 \ dB$

Denklem (61) kullanılarak : $Bağlantı Marjini = 2,07 dB \ge 0$ olarak bulunur.

Bağlantı bütçesi, seçilen ekipmanlara göre ve istenilen BER değerine göre hesaplanmıştır ve bağlantı bütçesi görülebileceği üzere 0'dan büyük çıkmıştır. Sonuç olarak, kullanılacak olan ekipmanlar, istenilen BER değerini karşılamaktadır. Ek olarak, bant genişliği, modülasyon tipi, ileri hata düzeltmesi oranı (fec) ve veri hızı bilinerek hesaplanabilir. İleri hata düzeltmesi

oranı, S bant verici ekipmanından alınabilir. Yuvarlama faktörü ise genel olarak 0,35 olarak kabul edilir.

İşgal Edilen Bant Genişliği(B) = Sembol Oranı $*(1 + \alpha)$

Sembol Oranı =
$$\frac{bit hizi}{m x r}$$

m = (M) (QPSK modülasyonu için; M=4)

Burada M, faz durumunun sayısını, r ileri hata düzeltme oranını, α ise filtre yuvarlanma oranını temsil etmektedir.

DVB için birleştirilmiş TURBO hata düzeltme oranı, r = 0,489

Daha sonra Sembol Orani = 1022,49 olarak ve

İşgal Edilen Bant Genişliği(B) = 1380,36 KHz olarak bulunur.

X bant Uydu-Yer Bağlantısı

Bu bölümde, X bant uydu-yer bağlantı bütçesi için gerekli hesaplamalar yapılacaktır. Dünyadan uyduya bir fotoğraf gönderilmeyeceğinden ötürü, X bant için yer-uydu bağlantı bütçesi yapılmayacaktır. Yapılan hesaplamalar, Yöntem bölümünde belirtilen gereksinimleri karşılayacak şekilde olacaktır.

Veri Hızı Hesapları

Bu bölümde veri hızı hesaplamaları yapılacaktır. Veri hızının ne kadar olması gerektiği hesaplandıktan sonra, bu veri hızını karşılayacak haberleşme alt sisteminin link bütçesi hesaplanacaktır. Bunun için uydu tarafından çekilen bir fotoğrafın kaç piksel olduğu hesaplanmalıdır. Daha sonra bulunan bu değer, kullanılan renk derinliği (bit sayısı) ve bant sayısı ile çarpılmalıdır. Burada bant sayısı, renk çeşitliliğini göstermektedir. Kamera siyahbeyaz fotoğraf çekeceğinden dolayı bant sayısı 1'dir.

$$Toplam \ piksel = \frac{Yatay \ Uzunluk}{\text{Cozünürlük}} \ x \ \frac{\text{Dikey } Uzunluk}{\text{Cozünürlük}} \ (80)$$

Burada çekilen fotoğrafın yatay uzunluğu 8 km, yatay uzunluğu 8 km'dir. Çözünürlük ise 0,5 metredir. Bu parametreler detaylı bir şekilde görev yükü kısmında bahsedilmiştir. Yukarıdaki denkleme göre 1 fotoğrafın toplam pikseli şu şekilde bulunur:

Toplam piksel = $2,6 \times 10^8$ piksel

Daha sonra siyah beyaz bir fotoğraf (bant sayısı=1) ve 12 bit renk derinliği için bir fotoğrafın toplam boyutu şu şekilde hesaplanır:

Dosya boyutu = Toplam piksel x Bayt x Bant Sayısı (81)

Burada, 12 bit 1,5 bayt olduğundan 1 fotoğrafın dosya boyutu şu şekilde bulunur:

1 Dosya boyutu = 384 Mb

Uydu, bir periyotta 30 fotoğraf çekeceğinden, ve bir periyot 5431 saniye olduğundan bir günde çekilen toplam fotoğraf boyutu 183,268 Gb olarak bulunur. Yörünge analizlerinde, uydunun ortalama geçiş süresi 8 dakika (480 saniye) olduğundan veri hızı denklem (82) ile şu şekilde hesaplanır :

Veri hızı =
$$\frac{Dosya Boyutu}{Geçiş Süresi}$$
 = 381,807 Mb/Saniye veya 3054,46 Mbps olarak bulunur.

JPEG 2000 formatı ile kayıpsız bir şekilde 1:2 oranında dosya sıkıştırması kullanılarak [Sayood, 2018] toplam ulaşılması gereken veri hızı **1527,23** Mbps olarak bulunur.

Çözünürlük	0,5 metre
Yatay Taranan Uzunluk	8000 metre
Dikey Taranan Uzunluk	8000 metre
Toplam Piksel	2,6 x 10 ⁸ piksel
1 Fotoğrafın Boyutu	384 Mb
1 Günde Çekilen Fotoğrafların Toplam Boyutu	183,268 Gb
JPEG 2000 ile Sıkıştırılmış Dosya Boyutu	91,634 Gb
Geçiş Süresi	480 saniye
Veri Hızı	1527,23 Mbps

Tablo 48 Dosya Boyutu ve Veri Hızı

Atmosferik Kayıplar

Bu bölümde, ilk olarak kayıplar hesaplanacaktır. Daha sonra hesaplanan toplam kayıplara göre bağlantı bütçesini karşılayacak bağlantı bütçesinin hesaplamaları yapılacaktır.

Atmosferik Soğurma

X bant için atmosferik soğurmaya bağlı kayıplar, S bant yer-uydu bağlantı bölümünde kullanılan denklemler yardımı ile hesaplanacaktır.

8,25 GHz frekansı değerini ve denklem (72) kullanarak a_0 ve a_w değerleri bulunur.

$$a_0 = 6,69 * 10^{-3}$$
 ve $a_w = 1,338 * 10^{-5}$

Daha sonra denklem (68) kullanılarak, toplam atmosferik soğurma şu şekilde bulunur:

$$A_a = 0,280 \ dB$$

Yağmur Zayıflatması

X bant için yağmura bağlı zayıflatma kaybı S bant Yer-uydu bağlantı bölümünde kullanılan denklemler yardımı ile hesaplanacaktır.

8,25 GHz frekans ile tablo 47'den aşağıdaki katsayılar elde edilir:

$$a_h = 0,00454$$
 $a_v = 0,00395$ $b_h = 1,327$ $b_v = 1,31$

Bu katsayıların yatay ve dikey polarizasyon için oldukları unutulmamalıdır.

Ardından denklem (78) kullanılarak dairesel polarizasyon katsayıları bulunur.

$$a_c = \frac{a_h + a_v}{2}$$
 $b_c = \frac{a_h b_h + a_v b_v}{2a_c}$
 $a_c = 4,245 * 10^{-3}$ $b_c = 1,319$

Ardından denklem (77) kullanılarak L_s değeri bulunur:

$$L_s = 16,70 \ km$$

Tablo 43'den $r_{0.1}$ için kullanılacak denklem belirlenir, daha sonra L_G değeri kullanılarak $r_{0.1}$ değeri hesaplanır:

$$r_{0,1} = 0,916$$

Kapalı hava için R = 2 mm/saat, hafif yağmur için R = 7 mm/saat ve sağanak yağmur için R = 25 mm/saat olarak alınır.

Daha sonra denklem (67) kullanılarak, farklı R değerleri için toplam yağmur zayıflatmaları bulunabilir.

R = 2 mm/saat	$A_0 = 0,162 dB$
R = 7 mm/saat	$A_0 = 0,845 dB$
R = 25 mm/saat	$A_0 = 4,530 \ dB$

Bu değerler, S bant yağmur kayıpları ile karşılaştırıldığında, X bandının S bandına göre yağmurdan daha fazla etkilendiği açıkça görülmektedir.

Yol Kaybı

X bant için Yol Kaybı, S bant yer-uydu bağlantı bölümünde kullanılan denklemler yardımı ile hesaplanacaktır.

Denklem (65) ile menzil değeri şu şekilde hesaplanır:

Menzil =1160,4 km Frekans değeri: $f_{MHz} = 8250 MHz$

Ardından denklem (64) ile yol kaybı 172,07 dB olarak hesaplanır.

Daha sonra denklem (63) ile toplam kayıp hesaplanabilir.

Tablo 49 X Bant için Toplam Kayıplar

	Atmosferik Soğurma	Yağmur Zayıflatması	Yol Kaybı	Sönme Marji	Yer İstasyonu Üzerindeki Hat kaybı	Toplam Kayıp
Açık hava	0,280 d <i>B</i>	0,1620 d <i>B</i>	172,07 dB	3 dB	1,5 <i>dB</i>	177,012 dB

Hafif yağmur	0,280 d <i>B</i>	0,845 d <i>B</i>	172,07 dB	3 dB	1,5 <i>dB</i>	177,695 dB
Sağanak yağmur	0,280 d <i>B</i>	4,53 d <i>B</i>	172,07 dB	3 dB	1,5 <i>dB</i>	181,38 <i>dB</i>

X bant Uydu-Yer Bağlantı Hesaplamaları

Tablo 50 X Bant İd	in Kullanılan Yer İ	İstasvonunun Özellil	kleri

Anten Çapı	7,3 metre karbon-fiber
Anten Tipi	Cassegrain tasarımı
Çalışma Frekansı	8000-8500 MHz (X bany için)
X Bant Anten Kazancı	54,15 dBi @ 8250 MHz
X Bant G/T Değeri	32,8 dB/K

$$BER = \frac{1}{2} erfc(\sqrt{(Eb/N_0)})$$
$$erfc(x) = \frac{2}{\sqrt{\Pi}} \int_{x}^{\infty} e^{-t} dt$$

Gereksinimler bölümünün 3.maddesine göre gerekli E_b/N_0 değeri 9 dB olarak bulunur.

$$(BER = 1,104 \ x \ 10^{-5})$$

Denklem (61), denklem (62) ve 1527,23 mbps (veya 93,84 dB-Hz) veri hızı kullanılarak aşağıdaki eşitsizlik elde edilir:

$$Alici \frac{C}{N_0} > 100,84 \, dB - Hz$$

Tablo 48'den, G/T = 32,8 dB/K olarak, Tablo 22'den, Kayıplar(dB) = 181,38 dB olarak alınır. Ardından EIRP değerinin minimum olması gereken değeri bulunur.

EIRP (dBW) =
$$P_t - L_c + G_a > 20,82 \text{ dBW}$$

Kablo kaybı 5 dB olarak alındığında, aşağıdaki eşitsizlik elde edilir:

$$P_t + G_a > 25,82 \ dBW$$

Yukarıdaki eşitsizlikten anlaşılabileceği üzere, uydu üzerinde kullanılacak olan vericinin çıkış gücü ile, uydu üzerinde kullanılacak olan antenin kazancı 25,82 dBW değerinden daha büyük olmalıdır. X bant uydu-yer bağlantısı için kullanılacak olan ekipmanlar, bu eşitsizliğe göre seçilecektir.

Tablo 51 X Bant Verici Özellikleri	(TREKS 823)
------------------------------------	-------------

Parametre	Değer
Çalışma Frekansı	8,23 GHz
DC Güç Tüketimi	65 W
Veri İletim Hızı	100 Mb/s
Modülasyon	QPSK
Boyutlar	4 cm x 31 cm x 31 cm
Ağırlık	4120 gr
Çıkış Gücü	7 W

Burada, S bandın aksine, istenilen veri hızının yüksek olması nedeni ile uydu üzerinde kullanılacak olan vericinin çıkış gücünün yüksek olması gerekmektedir. Verici olarak, TÜBİTAK'ın üretmiş olduğu 7 Watt çıkış değerine sahip olan TREKS 823 vericisi kullanılmıştır. Yukarıdaki tabloda Watt birimi, dBW birimine çevrildiği zaman aşağıdaki değer elde edilir:

$$P_t = 8,45 \, \text{dBW}$$

Ardından G_a değeri aşağıdaki değerden büyük olmalıdır:

$$G_a > 17,82 \ dB$$

Bu eşitsizlikten görülebileceği gibi, X bant bağlantı bütçesi için yüksek kazançlı bir anten gereklidir. (En az 17,82 dB) Uyduda S bant için kullanılan anten kazancının sıfır olduğunu unutmayın. Anten' den yüksek kazanç elde etmenin birçok yolu vardır. (Yönlü bir anten kullanmak, birden fazla anten kullanmak veya gerekli anten kazancını düşürmek için birden fazla verici kullanmak gibi) Bu bölümde, bu anten kazancını elde etmek için yönlü bir anten (boynuz anten) kullanılacaktır.

Performans	Değer
Maksimum İzotropik Kazanç	18 dBic
Bant Genişliği	8000-8500 MHz
Tasarım Ömrü	7 ул
Boyutlar	252 x 113,4 x 103,4 mm
Ağırlık	450 gram

Yukarıdaki tabloda görüleceği üzere, anten kazancı 18 dBi'dir. Bu değer kullanılarak denklem (70)'in yardımı ile EIRP değeri bulunur.

$$EIRP = P_t - L_c + Ga = 21,45 \ dBW$$

Ardından $\frac{c}{N_0} = 101,48 \, dBW$ olarak bulunur.

Bu değerin 100,84 dB den daha büyük olması gerektiği unutulmamalıdır.

Mevcut
$$\frac{E_b}{N_0} = 9,94$$

Bağlantı marjini = 0,1 dB olarak bulunur.

Daha sonra Bağlantı Marjini = $Mevcut \frac{E_b}{N_0} - Gerekli \frac{E_b}{N_0} \Rightarrow Bağlantı Marjini = 0,1 dB$ olarak bulunur.

Ekipman	Kütle değeri	Birim
S Bant Verici	0,1	Kg
X Bant Verici	4,12	Kg
S Bant LNA	0,09	Kg
X Bant Anten	0,45	Kg
S Bant Alıcı	0,2	Kg
S Bant Anten (X2)	0,47	Kg
Toplam	5,43	Kg

Tablo 53 Haberleşme Alt Sistemi Kütle Bütçesi

Yukarıdaki tablo, haberleşme alt sistemi için uydu üzerinde kullanılan ekipmanların kütlelerini göstermektedir. Toplam kütle 5,43 kg olarak bulunmuştur.

Haberleşme Alt Sistemi Bağlantı Bütçesi Analizleri

Bu bölümde, Uygulamalar kısmında hesaplanan bağlantı bütçelerinin analizleri paylaşılacaktır.

S BANT	Açık Hava	Yağmurlu	Sağanak	Birimler
Yer-uydu bağı çalışma frekansı	2,20	2,20	2,20	GHz
Yer İstasyonu		-		
Çap	7,30	7,30	7,30	m
Sinyal genişliği	1,31	1,31	1,31	derece
Anten verimi	69,7%	69,7%	69,7%	%
Kazanç	42,95	42,95	42,95	dBi
G/T	20,85	20,85	20,85	dB/K
Yer İstasyonu Verici Gücü	100,0	100,0	100,0	W
Kablo Kaybı	-5,0	-5,0	-5,0	dB
EIRP	57,95	57,95	57,95	dBW
Yayılma Menzili	1.160,4	1.160,4	1.160,4	km
Serbest Uzay Yol Kaybı	-160,59	-160,59	-160,59	dB
Atmosferik kayıp	-0,2	-0,3	-0,3	dB
Sönme marji	-3,0	-3,0	-3,0	dB
Uydudaki hat kaybı	-1,5	-1,5	-1,5	dB
Toplam kayıp	-165,33	-165,34	-165,37	dB
Uydu anteni				
Anten verimi	55,0%	55,0%	55,0%	%
Anten kazancı	0,00	0,00	0,00	dBi
Kullanıcı veri hızı	1000,0	1000,0	1000,0	kbps
Alınan taşıyıcı güç, C	-107,38	-107,39	-107,42	dBW
Sistem gürültü sıcaklığı	28,0	28,0	28,0	dB-K
Etkili G/T, uydu	-27,97	-27,97	-27,97	dB/K
Alıcı C/No	93,25	93,24	93,21	dB-Hz
Kullanıcı veri hızı	60,00	60,00	60,00	dB-Hz
Mevcut E b/No, Yer-uydu bağı	33,25	33,24	33,21	dB
Gerekli E _b /N _o	14	14	14	dB
Link Marji	19,25	19,24	19,21	dB
TURBO için FEC oranı	0,489	0,489	0,489	
Yuvarlanma faktörü	0,35	0,35	0,35	
Faz durumlarının sayısı(M)	2	2	2	
BER	6,06577E-08	6,06577E-08	6,06577E-08	
Sembol orani	1022,494888	1022,494888	1022,494888	kbps
İşgal edilen bant genişliği	1380,368098	1380,368098	1380,368098	kHz
SER	1,21315E-07	1,21315E-07	1,21315E-07	
Yükseklik	300	300	300	km
Yükseklik açısı	10	10	10	derece
Modülasyon	QPSK	QPSK	QPSK	

Yukarıdaki tablo S bant yer-uydu bağlantı hesaplamalarının sonucunda ortaya çıkan tüm verileri göstermektedir. Mavi renkli kutuların değerleri, gereksinimler bölümünden alınmıştır. Sarı renkli kutular, Profen tarafından sağlanan yer istasyonu değerleridir. Gri kutular ise kabul edilen (varsayılmış) değerlerdir. Beyaz kutular ise bu veriler kullanılarak hesaplanan değerlerdir. Tabloda görülebileceği üzere link marji 0'dan büyüktür. Diğer bir deyişle, kullanılan ekipman gereksinimleri oldukça kolay bir şekilde karşılamaktadır. Bunun nedeni veri hızının küçük olması ve yer istasyonunun büyük olmasıdır.

S BANT	Açık Hava	Yağmurlu	Sağanak	Birimler
Uydu-yer bağı çalışma frekansı	2,20	2,20	2,20	GHz
Uydu anteni				
Anten verimi	55,0%	55,0%	55,0%	%
Anten kazancı	0,00	0,00	0,00	dBi
Uydu verici gücü	0,5	0,5	0,5	W
Kablo kaybi	-5,0	-5,0	-5,0	dB
EIRP, Uydu	-8,01	-8,01	-8,01	dBW
Yayılma Menzili	1.160,4	1.160,4	1.160,4	km
Serbest uzay yol kaybı	-160,59	-160,59	-160,59	dB
Atmosferik kayıp	-0,2	-0,3	-0,3	dB
Hat kaybi	-1,5	-1,5	-1,5	dB
Sönme marji	-3,0	-3,0	-3,0	dB
Toplam kayıp	-165,33	-165,34	-165,37	dB
Yer Istasyonu				
Anten çapı	7,30	7,30	7,30	m
Sinyal genişliği	1,31	1,31	1,31	derece
Anten verimi	69,7%	69,7%	69,7%	%
Anten kazancı	42,95	42,95	42,95	dBi
Alınan taşıyıcı güç, C	-130,39	-130,40	-130,43	dBW
Sistem gürültü sıcaklığı	22,1	22,1	22,1	dB-K
G/T, yer istasyonu	20,85	20,85	20,85	dB/K
Alici C/No	76,11	76,10	76,07	dBW
Kullanıcı veri hızı	60,00	60,00	60,00	dB-Hz
Mevcut E _b /No, Uydu-yer bağı	16,11	16,10	16,07	dB-Hz
Gerekli E _b /N _o	14	14	14	dB
Link Marji	2,11	2,10	2,07	dB
Kullanıcı veri hızı	1000	1000	1000	kbps
TURBO için FEC oranı	0,489	0,489	0,489	
Yuvarlanma faktörü	0,35	0,35	0,35	
Faz durumlarının sayısı(M)	2	2	2	
BER	6,06577E-08	6,06577E-08	6,06577E-08	
Sembol orani	1022,494888	1022,494888	1022,494888	kbps
İşgal edilen bant genişliği	1380,368098	1380,368098	1380,368098	kHz
SER	1,21315E-07	1,21315E-07	1,21315E-07	
Yükseklik	300	300	300	km
Yükseklik açısı	10	10	10	derece
Modülasyon	QPSK	QPSK	QPSK	

Tablo 55 S Bant Uydu Yer Bağlantı Bütçesi

Yukarıdaki tablo S bant uydu-yer bağlantı bütçesi için tüm verileri göstermektedir. Mavi renkli kutuların değerleri, gereksinimler bölümünden alınmıştır. Sarı renkli kutular, Profen tarafından sağlanan yer istasyonu değerleridir. Gri kutular ise kabul edilen(varsayılmış) değerlerdir. Beyaz kutular ise bu veriler kullanılarak hesaplanan değerlerdir. Tabloda görülebileceği üzere bağlantı marji 0'dan büyüktür. Uydu-yer bağlantısındaki link marjinin, yer-uydu bağlantı marjininden düşük olmasının sebebi, kullanılan vericilerin farklı olmasıdır. Yer-uydu bağlantısı için, kullanılan verici yer istasyonunda bulunduğundan, yüksek enerjili büyük vericiler kullanılabilir. Bu hesaplamada yer istasyonu üzerinde bulunan vericinin çıkış gücü 100 Watt'dır. Bununla birlikte, uydu-yer bağlantısı için kullanılan verici uydunun üzerinde olduğundan dolayı, daha düşük güç tüketimine sahip vericiler kullanılmalıdır. Uydu üzerinde bulunan vericinin çıkış gücü 0,5 Watt'dır.

X BANT	Kapalı Hava	Yağışlı Hava	Sağanak	Birimler
Aşağı Bağlantı Frekansı	8,25	8,25	8,25	GHz
Uydu				
Anten Kazancı	18,00	18,00	18,00	dBi
Uydu Verici Gücü	7,0	7,0	7,0	W
Kablo Kaybi	-5,0	-5,0	-5,0	dB
EIRP, Uydu	21,45	21,45	21,45	dBW
Yayılma Menzili	1.160,4	1.160,4	1.160,4	km
Serbest uzay Yol Kaybı	-172,07	-172,07	-172,07	dB
Atmosferik Kayıp	-0,4	-1,1	-4,8	dB
Sönme Marji	-3,0	-3,0	-3,0	dB
Toplam Kayıp	-175,51	-176,20	-179,88	dB
Yer İstasyonu				
Anten Çapı	7,30	7,30	7,30	m
Anten Verimi	65,5%	65,5%	65,5%	%
Anten Kazancı, G	54,16	54,16	54,16	dBi
Kablo Kaybı	-1,5	-1,5	-1,5	dB
Kullanıcı Başına Taşıyıcı Güç, C	-101,40	-102,09	-105,77	dBW
Sistem Gürültü Sıcaklığı	21,4	21,4	21,4	dB-K
G/T	32,81	32,81	32,81	dB/K
Alici C/No	105,85	105,16	101,48	dBW
Kullanıcı Veri Hızı	91,84	91,84	91,84	dB-Hz
Mevcut E _b /N _o , Uydu-yer bağı	14,01	13,32	9,64	dB-Hz
Gerekli E _b /N _o	9	9	9	dB
Link Marji	5,0	4,3	0,6	dB
Kullanıcı Veri Hızı	1527229,853	1527229,853	1527229,853	kbps
RS ve Viterbi 3/4 için FEC oranı	0,691176471	0,691176471	0,691176471	
Yuvarlama Faktörü	0,35	0,35	0,35	
Faz durumlarının sayısı(M)	2	2	2	
BER	1,10452E-05	1,10452E-05	1,10452E-05	
Sembol Oranı	1104,804574	1104,804574	1104,804574	Mbps
İşgal edilen Bant Genişliği	1491,486175	1491,486175	1491,486175	MHz
SER	2,20905E-05	2,20905E-05	2,20905E-05	
Yükseklik	300	300	300	km
Yükseklik açısı	10	10	10	derece
Modulasyon	QPSK	QPSK	QPSK	

Tablo 56 X Bant Uydu Yer Bağlantı Bütçesi

Yukarıdaki tablo tüm verileri göstermektedir. Mavi renkli kutular, gereksinimler bölümünden alınan değerlerdir. Sarı kutular Profen şirketinden alınan değerlerdir. Gri kutular, yapılan varsayımlardır. Kahverengi kutular, ekipmanlardan alınan değerlerdir. Beyaz kutular ise hesaplanan değerlerdir. Tabloda görülebileceği üzere, link marjini 0'dan büyük çıkmaktadır.

Güç Alt Sistemi

GAS Ekipmanları ve Mimarisi:

Elektrik Güç sistemi aşağıdaki gibi üç ana ekipmandan oluşmaktadır: Güç Yönetim Ünitesi (GYÜ), Açılabilir Güneş Paneli (Üçlü bağlantı GaAs (Galyum Arsenit) hücre tipi), ve Lityum-İyon şarj edilebilir batarya.

Ekipmanların betimlemesi EGAS Teknik Özellikleri (Tablo 60) kısmında sunulmaktadır.

ELEKTRİK GÜÇ ALT SİSTEM MİMARİSİ

Sistemin Ana Modları ve Güç Bütçesi:

	Gündüz Modları Güç Tüketimi						Tutulma Modları Güç Tüketimi		
Alt Sistemler	Bekleme (Watt)	Operasyonel (Görüntü Çekimi) (Watt)	Operasyonel (Yörünge Man.) (Watt)	Operasyonel (Görüntü Ç. + İndirme) (Watt)	Operasyonel (Haberleşme) (Watt)	Bekleme (Watt)	Operasyonel (Yörünge Man.) (Watt)	Operasyonel (Haberleşme) (Watt)	
Görev Yükü	30	185	30	185	30	30	30	30	
İtki	20	20	300	20	20	20	300	20	
Haberleşme	5	5	5	45	45	5	45	45	
Termal Kontrol	10	10	10	10	10	10	10	10	
Elektrik Güç	10	10	10	10	10	10	10	10	
Yönelim Belirleme ve Kontrol	11	65	11	65	11	11	11	65	
Veri Kotarma	16	16	16	16	16	16	16	16	
Toplam	102	311	382	351	142	102	422	196	

Tablo 57 Uydu Ana Modları

Güneş Hücresi Verimliliği	31,5	%
Güneş Hücresi İndirgemesi	2,75	%/yıl
Misyon Ömrü	3	Yıl
Güneş Akısı	1358	W/m ²
Doğal Bozulma	0,85	-
Güneş Görme Açısı	0	Derece
Şarj/Deşarj Döngüsü	17431	-
T (Yörünge Periyodu)	5431	Saniye

Tablo 58 Güç Bütçesinde Hesaplama Parametreleri

Tablo 59 Güç Bütçesi, Güneş Paneli ve Batarya Boyutlandırması

	Bekleme	Operasyonel (Görüntü Çekimi)	Operasyonel (Yörünge Man.)	Operasyonel (Görüntü Ç. + İndirme)	Operasyonel (Haberleşme)	Birim
Те	2179	2179	2179	2179	2179	sn
Те	0,605	0,605	0,605	0,605	0,605	saat
Td	3252	3252	3252	3252	3252	sn
Ре	102	102	422	196	196	W
Pd	102	311	382	351	142	W
Xd	0,80	0,80	0,80	0,80	0,80	-
Xe	0,60	0,60	0,60	0,60	0,60	-
DoD	0,20	0,20	0,20	0,20	0,20	-
<u>Psa</u>	241,40	502,65	948,74	657,62	396,37	W
Ро	427,77	427,77	427,77	427,77	427,77	W/m ²
PBOL	363,60	363,60	363,60	363,60	363,60	W/m ²
PEOL	334,42	334,42	334,42	334,42	334,42	W/m ²
ASA	0,72	1,50	2,84	1,97	1,19	m²
ASA	7218,41	15030,34	28369,30	19664,21	11852,28	cm ²
<u>Cbat</u>	308,69	308,69	1277,14	593,17	593,17	W-hr
Güneş Panel Ağırlığ I	4,46	9,28	17,52	12,14	7,32	kg

EGAS Teknik Özellikleri:

F	Parametreler	Değer	Birim
GYÜ	Birincil Bara Voltaj	28	V
	Güç Beslemesi (Ortalama)	500	W
	Güç Beslemesi (Pik)	1200	W
	Batarya Regülatörü	MPPT ya da S3R	-
	İdeal Güç Tüketimi	10	W
	Ağırlık	5,9	Kg
Güneş Paneli	Temel Malzeme	Ge alt tabakası üzerine GaInP/GaAs/Ge	-
	Güneş Hücresi Verimliliği	31,5	Yüzdelik (%)
	Güneş Hücresi Bozulması	%3	Yıl Başına
	Doğal Bozulma	85	Yüzdelik (%)
	Alan	2,84	m²
	Ağırlık	17,52	Kg
Batarya	Deşarj Derinliği (DoD)	20	Yüzdelik (%)
	Nominal Voltaj	28	V
	Spesifik enerji	113,1	W-Saat/kg
	Batarya Kapasitesi	893	W-Saat
	Ağırlık	11,3	Kg

Tablo 60 EGAS Teknik Özellikleri

<u>EGAS Sonuç</u>: Sonuç olarak, sistemin ortalama gücü 311 W'tır. Bu da Operasyonel Görüntü Çekimi Moduna karşılık gelir. Sistemin pik gücü ise 422 W ve bu da Operasyonel Yörünge Manevra Moduna karşılık gelir. Gerekli batarya kapasitesi ise, % 20 DoD (Deşarj Derinliği) değeri dikkate alınarak 1277,14 W-saattir. 0° olan güneş görme açısı ile bunları karşılamak için gerekli güneş panelin alanı 2,84 m²'dir. Buna karşılık gelen güneş panelin ağırlığı 17,52 kg'dır.

Yapısal Alt Sistemi

Mikro Uydu yapısının ağırlıklı olarak kompozit malzemeler kullanılarak üretilmesi planlanmaktadır. Platform, sekizgen konfigürasyon olarak tasarlanmıştır. Bu şekilde oluşacak sürtünme kuvvetinin önüne geçilmesi planlanmıştır. Platform içi bal peteği yapısı (İng. Honeycomb Structure) şeklinde tasarlanması planlanmaktadır. Uydunun fiziki ölçüleri aşağıdaki tabloda verilmiştir.

Parametre	Değer	Birim
Uydu Genişlik	336,59 x 156,03	Cm
Uydu Yükseklik	178	Cm
Platform	75 x 75 x 60	Cm

Şekil 30 Mikro Uydu Yapısal Modeli

Şekil 31 Mikro Uydu Yapısal Modeli

SONUÇ

Görev yükü ve yörünge analizleri ile başlanarak 100 kg altında ve 0,5 m çözünürlükte uydunun kavramsal analizi yapılmıştır. Elektro-optik görev yükü için yapılan kavramsal analiz sonucunda bu özelliklere sahip bir kameranın gerekli optimizasyonlar yapıldıktan sonra tasarlanabileceği görülmektedir.

Görev yükü kütle olarak en başta verilen kütle bütçesi sınırları içerisinde yer almaktadır ve gereken YÖM değerini sağlayabilmektedir. Dedektör araştırması derinleştirilerek piksel sayısı ve çekim süresi parametreleri görev hedefine daha uygun değerlere sahip bir ekipman bulunduğu takdirde FOV, SW ve çekim süresi optimize edilerek tasarım limitleri içerisinde tutulabilecektir.

İtki alt sistemi uyduyu 3 yıl boyunca yaklaşık 12 kg yakıt ile uyduyu yörüngede tutabilmektedir. İtki alt sisteminin toplam kütlesi 21,5 kg olup, itki alt sisteminin 10 kg kütle gereksinimi sağlanamamıştır. Bu gereksinim için gerekli optimizasyonlar ileriki çalışmalarda yapılacaktır.

Yönelim Belirleme ve Kontrol Alt Sistemi, 8 kg olan kütle sınırını 6,3 kg ile 100 W olan güç sınırını ise 65 W ile sağlamıştır. 10 m olan Coğrafi Konum Hatası 5,9 m ile 0,1 derece olan İşaretleme Hatasını ise 0,001 derece ile sağlamıştır. Tepki Tekerleri, 100 kg olarak tasarlanan kavramsal model için yeterli olacak bir şekilde tasarlanmıştır.

Haberleşme alt sistemi bağlantı bütçeleri Milli Yer İstasyonundan alınan değerler kullanılarak hazırlanmıştır. S bant için yapılan bağlantı bütçeleri, bit hata oranının 10^{-7} 'den daha az olacak şekilde hazırlanmıştır. Bu bağlantı bütçelerini hazırlamak için kullanılan ekipmanlar, en kötü hava koşullarında bile yerden uyduya ve uydudan yere gönderilen sinyallerin $6,08x10^{-8}$ bit hata oranı ile gönderebilmektedir. Bağlantı bütçelerinin marji, en kötü koşullarda bile 0'dan büyük çıkmaktadır. X bant için yapılan bağlantı bütçesi, hesaplanan dosya boyutunu $1,10 x 10^{-5}$ bit hata oranı ile en kötü şartlarda bile uydudan yere indirebilecek şekilde yapılmış ve bağlantı bütçesinde kullanılan ekipman değerleri buna göre seçilmiştir. Bu bağlantı bütçelerini hazırlamak için kullanılan ekipmanların toplam ağırlığı 5,43 kg olarak bulunmuştur. Bu bağlantı bütçeleri, ağırlık parametresinin çok önemli olduğu uzay ortamında, en uygun ve en hafif ekipmanların doğru olarak seçilmesini sağlamıştır.

Güç alt sisteminin ortalama gücü 502,65 W'tır. Bu da Operasyonel Görüntü Çekimi Moduna karşılık gelir. Sistemin pik gücü ise 948,74 W ve bu da Operasyonel Yörünge Manevra Moduna karşılık gelir. Gerekli batarya kapasitesi ise, %20 DoD (Deşarj Derinliği) değeri dikkate alınarak 1277,14 W-saattir. 0° olan güneş görme açısı ile bunları karşılamak için gerekli güneş panelin alanı 2,84 m²'dir. Buna karşılık gelen güneş panelin ağırlığı 17,52 kg'dır.

Bu çalışma ile birlikte sistem mühendisliği yaklaşımı ile bir elektro-optik yer gözlem Mikro Uydu sistemi kavramsal analizi yapılmıştır. Bu kavramsal Mikro Uydu model sistem mühendisliği yaklaşımı ile yapıldığından bu sistem ileride ülkemizde tasarlanacak benzer uydulara öncü olabilecektir.

Teşekkür

Bektaş AKYAZI' ya, Mustafa EKİNCİ'ye ve Dr. Özgür KARCI'ya elektro-optik görev yükü için verdikleri katkılarından dolayı teşekkür ediyoruz. Nuri HACIÇAVUŞOĞLU'na haberleşme alt sistemleri ile alakalı katkılarından dolayı teşekkür ediyoruz. Ayrıca, Sergii NEUGODNIKOV'a, Demet ULUŞEN'e ve Fatih YILMAZ'a itki alt sistemine yapmış olduğu katkılardan dolayı teşekkür ediyoruz.

Kaynaklar

A. Orych, 2015. Review of Methods for Determining the Spatial Resolution of Uav Sensors, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug 02 Sep 2015, Toronto, Canada Barbarits, J. K., ve King, P. T., 2006. Xenon Feed System Progress. Carlos Alberto Burguillos Fajardo, 2019. Emergency Communications Network for Disaster Management Catherine Gaudin-Delrieu, Jean-Luc Lamard, Philippe Cheroutre, Bruno Bailly, Pierre Dhuicq, Olivier Puig 2008. The high resolution optical instruments for the pleiades hr earth observation satellites, Toulouse, International Conference on Space Optics/ICSO. Craig, N. I. ve Myers, J., 2019. Performance, Stability, and Thermal Characterization of a Sub-Kilowatt Hall Thruster. Curtis, H. D., 2014. Orbital Mechanics for Engineering Students, Cilt. 3, Elsevier Dr. Rajender Thusu, Feb.1, 2012. The Growing World of the Image Sensors Market Education Gerard Maral, Michel Bousquet, 2009. "Satellite Communications Systems 5th edition" Goebel, D. M. ve Katz I., 2008. Fundamentals of Electric Propulsion: Ion and Hall Thrusters, John Wiley & Sons, Cilt. 1, Ibrahim Kök, 2012. Comparison and Analysis of Attitude Control Systems of a Satellite Using **Reaction Wheel Actuators** J. B. Serraano, E.J. Mora, F. Sarti, H. Marcille, P. Cope (1997) Spacecraft Attitude Rate Measurement Systems without Gyros James R. Wertz, David F. Everett, Jeffery J. Puschell, 2011, Space Mission Engineering: The New SMAD, Space Technology Library. Jeffrey D. Beish, 26 September 2014. Cassegrain Telescopes for Amateurs Johannes Schoonwinkel, 2007. Attitude Determination and Control System of a Nanosatellite John Proakis, Massoud Salehi "Digital Communications", Nov 6 2007. McGraw-Hill K. Jacobsen, 2005. High Resolution Imaging Satellite Systems, University of Hannover, Germany. Kamhawi, H., Liu, T. M., Benavides, G. F., Mackey, J., Server-Verhey, T., Yim, J., Butler-Kawnine, T. ve Kawnine, M., 2015. Short Review on Electric Propulsion System: Ion Thruster. Keith J. Kasunic, 2011. Optical Systems Engineering, 3.Baski, The McGraw-Hill. Khalid Sayood, 2006. Introduction to Data Compression, 3.Baski, Elsevier. Larry Andrews, 1992. Special Functions of Mathematics for Engineers, Cilt.2 Maxar, Digital Globe, 2019. WorldView-3 Datasheet, www.digitalglobe.com. Met Office, 2007. Water in the Atmosphere, Crown Copyright.

Mojtaba Abolghasemi, Dariush Abbasi-Moghadam, 2012. Design and performance

evaluation of the imaging payload for a remote sensing satellite, Elsevier.

Nakles, M. R., Hargus, W. A., Delgado, J. J. ve Corey, R., 2011. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster.

NASA, 2015. *Iodine Hall Thrusters,* NASA Facts, Glenn Research Center.

Planet Labs Inc., 2018. Skysat Imagery Product Specification, www.planet.com.

Riccardo Nasini, Axel Oddone, S. L., 2018. BlackSky Constellation: Very High Resolution

Optical Data for Multi-Daily Revisit, Dubrovnik, 24th MARS Conference.

Russell C. Hibbeler, 2016. Engineering Mechanics Dynamics ESA, 2011. ESA Pointing Error Engineering Handbook

Savunma Haber, 2019: www.savunmahaber.com

Sean Victor Hum, 2017, Bahar Dönemi. Atmospheric Effects: Atmospheric and Rain

Attenuation, Erişim adresi: https://www.waves.utoronto.ca/prof/svhum/ece422/notes/20b-atmospheric.pdf

Soner Karataş, 2006. LEO Satellites: Dynamic Modelling, Simulations And Some Nonlinear

Attitude Control Techniques

Tsybulnyk, A. ve Neugodnikov, S., 2019. *Development of High Efficiency Power Processing Unit for Hall Thruster.*

University of Surrey, Satellite Communications short course project, Link budget exercises,

Warren J. Smith Modern Optical Engineering, 4th Ed., 2007. McGraw-Hill Professional

Welle, R. P., 2008. Propellant Storage Considerations for Electric Propulsion.

Wiley J. Larson, James R. Wertz, 2005. Space Mission Analysis and Design, 3rd ed., Space Technology Library.

William E. Purdy, Peter W. Gaiser, Gene A. Poe, Enzo A. Uliana, Thomas MeissnerFrank J.

Wentz, 2006. Geolocation and Pointing Accuracy Analysis for the WindSat Sensor

William J. Palermo, 2002. Angular Rate Estimation for Gyroless Satellite Attitude Control