UHUK-2020-067

ÜÇ EKSENLİ YEREDURAĞAN UYDULARDA GÖREV YÜKÜ PANELLERİNDE RADYATÖR ALANLARININ ISIL ANALİZ ÇALIŞMASI

Murat BULUT¹ Nedim SÖZBİR² Türksat A.Ş., Ankara Sakarya Üniversitesi., Sakarya Türksat A.Ş., Ankara

ÖZET

Isının uzaya atılmasını sağlayan radyatör alanları, ısıl kontrol sisteminin en önemli kısmını oluşturmaktadır.Bu alanlara göre uydunun boyutları belirlenir. Uydu projelerinin başlangıç aşamasında radyatör alanlarına bağlı olarak ısı atım kapasitesinin hesaplanması önem arzetmektedir. Bu çalışmada, 1 ile 15 m²'lik radyatör alanları gözönüne alınarak ısı atım kapasitesi, üç eksenli yeredurağan uyduların kuzey ve güney panelleri kullanılarak yapılmıştır. Hesaplamalarda radyatör alan sıcaklıkları 30 °C, 35 °C ve 40 °C alınmıştır. Yüzey yayınlama katsayı ve radyatör alanı sıcaklığı en yüksek olan radyatör alanlarında ısı atım kapasitesinin en yüksek olduğu görülmüştür.

SİMGELER

A	=	Alan, [m²]
OSR	=	Optik Güneş Yansıtıcıları (Optical Solar Reflector)
Q	=	lsı, [W]
q	=	Isı akısı, [W/m²]
Ť	=	Sıcaklık, [K veya °C]
α	=	Yüzey soğurulma katsayısı
3	=	Yüzey yayınlama katsayısı
σ	=	Stefan Boltzmann katsayısı [W/ m² K4]
Alt simg	е	
A	=	albedo
E	=	dünya ışınımı

- s = uzay sıcaklığı
- S = solar ışınım
- r = ışınım
- int = üretilen ısı

¹ Teknik Uzman, Uydu Programları Direktörlüğü., E-posta: bulut44@gmail.com

² Danışman, Sakarya Üniversitesi, Makina Müh. Öğr.Üyesi, E-posta: nsozbir@turksat.com.tr

GİRİŞ

Isı atımının gerçekleştirildiği radyatör alanları, uzay araçların ilk uzayda görevini icra ettiği günden bu yana yer almaktadır. Gelişen teknoloji ile birlikte elektronik ekipmanların üretmiş olduğu ısının artması ile birlikte radyatör alanların optimizasyonu son yıllarda uzay teknolojisinde çalışma konusu arasında önemli olarak yer almaktadır. Özellikle farklı gezegen misyonlarında ısı atımının gerçekleştiği radyatör alanlarının mümkün olduğunca yüksek verimde, düşük kütlede ve konuşlandırılabilir (deployable) radyatör alanları tasarımı ısıl kontrol çalışanlar tarafından yapılmaktadır.

Uzay araçlarında yer alan elektronik ekipmanların üretmiş olduğu ısı yüklerindeki artış ile birlikte radyatör alanlarındaki artış nedeniyle radyatör alanların önemi fark edilmiştir. Bu sebeple ile ilk çalışmalar 1968 yıllarında, uzay aracı uygulamalarında radyatör alanlarının yapısal alt sistem üzerinde rolü üzerine olmuştur [Cockfield, 1968]. Çalışmada radyatör alanındaki artış ile birlikte yapısal alt sisteminin en önemli kriterlerinden biri olan kütlenin optimizasyonu üzerinde çalışmalar yapılmıştır. Isıl alt sistem olarak, radyatör alanlarının optimizasyon konusu üzerinde son yıllarda önemli çalışmalar yapılmıştır [Curran ve Lam, 1996; Krikkis, Razelos, 2002; Hull, Tinker, SanSoucie ve Kittredge, 2006; Kim, Choi, Park ve Lee, 2015].

Yeredurağan yörüngede yer alan yeredurağan uydular yaklaşık olarak 36000 km uzakta olup uydu üretici firmalar tarafından tasarımları üç eksenli olarak yapılmaktadır. Üç eksenli yeredurağan uyduları uzaya ısı atımı, kuzey ve güney panellerinde bulunan radyatör alanları kullanılarak yapılmaktadır. Şekil 1'de üç eksenli yeredurağan uydu görülmektedir [Coşkun, Bulut ve Sözbir, 2016]. Isının atıldığı kuzey ve güney panelleri, optik güneş yansıtıcıları (optical solar reflector-OSR) ile kaplanmıştır. Optik güneş yansıtıcıları yüzey yayınlama katsayı değeri yüksek ve yüzey soğurulma katsayı değeri düşük malzemelerdir.

Şekil 1: Üç eksenli yeredurağan uydu [Coşkun, Bulut ve Sözbir, 2016].

Bu çalışmada üç eksenli yeredurağan uydularda görev yüklerinin (payload) bulunduğu panellerdeki radyatör alanlarından uzaya ısı atım kapasitesi analitik olarak ısıl analizi yapılmıştır.

ISIL ANALİZ MODELİ

Uydunun ısıl analiz modelinde optik güneş yansıtıcıları, termo-optik değerleri önemlidir. Radyatör alanları ve bu yüzeye yapıştırılan optik güneş yansıtıcılar sayesinde ısının uzaya atılması sağlanmaktadır. Radyatör alanlarının hesaplanmasında maksimum ısı transferi, maksimum güneş ışınım ömür sonu termo-optik özellikler gibi en kötü durumlar göz önüne alınarak yapılmaktadır [Bulut, Demirel, Gülgönül ve Sözbir, 2008; Sözbir, Bulut, Öktem ve Kahriman, 2008; Sözbir ve Bulut, 2009; Sözbir, Bulut, Kahriman ve Sözbir, 2010]. Uydularda ısıl analiz modelinde, uydu tarafından ışınım ile soğurulan ısı ve uydu tarafından atılan ısı dengesi (enerji dengesi) ile sağlanması gerekmektedir. Şekil 2'de enerji dengesi görülmektedir.

Şekil 2: Üç eksenli yeredurağan uyduda enerji dengesi [Coşkun, Bulut ve Sözbir, 2016].

Üç eksenli yeredurağan uydularda enerji dengesi aşağıdaki denklem ile elde edilmektedir.

$$(A_{S}q_{S} + A_{A}q_{A})\alpha + A_{E}q_{E}\varepsilon + Q_{int} = A_{surface}\sigma(T_{r}^{4} - T_{s}^{4})\varepsilon$$
(1)

Denklemin sol tarafında yer alan kısım soğurulan ısıyı, sağ tarafı uydu tarafından atılan ısıyı göstermektedir. Eşitliğin sol tarafındaki ilk ve ikinci terim net soğurulan ısıyı, üçüncü terim çalışma ısı yükünü (uyduda yer alan elemanların üretmiş olduğu ısı) göstermektedir. A_S , A_A ve A_E doğrudan gelen güneş, dünyadan yansıyarak gelen (albedo) ve doğrudan dünyadan yayılan kızılötesi ışınımı ile ilgili yüzey alanlarıdır. q_s , q_A ve q_E doğrudan gelen güneş, dünyadan yansıyarak gelen (albedo) ve doğrudan dünyadan yayılan kızılötesi ışınımı ile ilgili yüzey alanlarıdır. q_s , q_A ve q_E doğrudan gelen güneş, dünyadan yansıyarak gelen (albedo) ve doğrudan dünyadan yayılan kızılötesi ışınımı ile gelen ısı akılarıdır. Yüzey soğurulma katsayısı α olarak, yüzey yayınlama katsayısı ε olarak denklem (1) de gösterilmiştir. Üç eksenli yeredurağan uydularda yüzey soğurulma katsayısı değerleri 0.24 ila 0.27 arasında göstermek ile birlikte hesaplamalarda yüzey soğurulma katsayısı (α) 0.24 alınmıştır. Yüzey soğurulma katsayı değerlerin değişimleri, uydunun uzayda bulunduğu süre, optik güneş yansıtıcıların uyduda bulunduğu yer, dış ortamlardan kaynaklı kirlenme gibi durumlara bağlı olarak değişmektedir [Karam, 1998; Gilmore, 2002]. Uydu üretici firmaları uydunun ömrü sonundaki yüzey soğurulma katsayısı değerlerini, daha önce uzaya göndermiş olduğu uyduları göz önünde bulundurarak hesaplamalarda almaktadırlar. Yüzey yayınlama katsayısı ε ise 0.80, 0.85 ve 0.90 olmak üzere 3 farklı değer alınarak hesaplamalar yapılmıştır.

ANALİZ SONUÇLARI

Çizelge 1' de uzaya atılan ısı değerleri görülmektedir. Radyatör alanı 1 m²,radyatör sıcaklığı 30 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 431 W olarak hesaplanmıştır. Radyatör alanı 15 m², radyatör sıcaklığı 30 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 6465 W olarak hesaplanmıştır. Radyatör alanı 1 m², radyatör sıcaklıklığı 35 °C ve yüzey yayınlama katsayısı 0.9 için atılacak olan ısı miktarı 460 W olarak hesaplanmıştır. Radyatör alanı 15 m²,radyatör sıcaklıklığı 35 °C ve yüzey yayınlama katsayısı 0.9 için atılacak olan ısı miktarı 6902 W olarak hesaplanmıştır. Radyatör alanı 1 m², radyatör sıcaklıklığı 40 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 491 W olarak hesaplanmıştır. Radyatör alanı 15 m²,radyatör sıcaklıklığı 40 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 491 W olarak hesaplanmıştır. Radyatör alanı 15 m²,radyatör sıcaklıklığı 40 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 491 W olarak hesaplanmıştır. Radyatör alanı 15 m²,radyatör sıcaklıklığı 40 °C ve yüzey yayınlama katsayısı 0.9 için için atılacak olan ısı miktarı 7361 W olarak hesaplanmıştır. Kuzey ve güney görev yükü panelleri tarafından soğurulan ısı değerleri Çizelge 2, 3 ve 4 'de yer almaktadır.

	30 °C				35 °C		40 °C			
Alan	ε=0.8	ε=0.85	ε=0.9	ε=0.8	ε=0.85	ε=0.9	ε=0.8	ε=0.85	ε=0.9	
m²		Q (W)			Q (W)			Q (W)		
1	383	407	431	409	435	460	436	463	491	
2	766	814	862	818	869	920	872	927	981	
3	1149	1221	1293	1227	1304	1380	1309	1390	1472	
4	1532	1628	1724	1636	1738	1840	1745	1854	1963	
5	1915	2035	2155	2045	2173	2301	2181	2317	2454	
6	2299	2442	2586	2454	2607	2761	2617	2781	2944	
7	2682	2849	3017	2863	3042	3221	3053	3244	3435	
8	3065	3256	3448	3272	3476	3681	3490	3708	3926	
9	3448	3663	3879	3681	3911	4141	3926	4171	4416	
10	3831	4070	4310	4090	4346	4601	4362	4635	4907	
11	4214	4477	4741	4499	4780	5061	4798	5098	5398	
12	4597	4884	5172	4908	5215	5521	5234	5562	5889	
13	4980	5291	5603	5317	5649	5982	5671	6025	6379	
14	5363	5698	6034	5726	6084	6442	6107	6488	6870	
15	5746	6106	6465	6135	6518	6902	6543	6952	7361	

Cizelge	1:	Uzava	atılan	ISI
5 0		- 1		

Çizelge 2' de radyatör sıcaklığının 40°C olması durumda ve yüzey soğurulma katsayısının 0.24 olması durumunda toplam soğurulma ısı değeri (güneş ve elektronik ekipmanlar) yer almaktadır. Radyatör paneli 1 m², radyatör sıcaklığının 30°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 431 W olarak hesaplanmıştır. Radyatör paneli 15 m², radyatör sıcaklığının 30°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6465 W olarak hesaplanmıştır. Radyatör paneli 1 m², radyatör sıcaklığının 35°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6465 W olarak hesaplanmıştır. Radyatör paneli 15 m², radyatör sıcaklığının 35°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6465 W olarak hesaplanmıştır. Radyatör paneli 15 m², radyatör sıcaklığının 35°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6902 W olarak hesaplanmıştır. Radyatör paneli 1 m², radyatör sıcaklığının 40°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6902 W olarak hesaplanmıştır. Radyatör paneli 1 m², radyatör sıcaklığının 40°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 6902 W olarak hesaplanmıştır. Radyatör paneli 1 m², radyatör sıcaklığının 40°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 491 W olarak hesaplanmıştır. Radyatör paneli 15 m², radyatör sıcaklığının 40°C ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 7361 W olarak hesaplanmıştır.

	Kuze	y Panel @	2)40 °C,α	=0.24	Güne	y Panel (⊉ 40 °C, o	=0.24
Alan	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}
		@ε=0.8	@ε=0.85	@ε=0.9		@ε=0.8	@ε=0.85	@ε=0.9
m²		(\	V)		(W)			
1	127	309	337	364	136	300	328	355
2	254	619	673	728	271	601	656	710
3	381	928	1010	1091	407	901	983	1065
4	508	1237	1346	1455	543	1202	1311	1420
5	634	1546	1683	1819	679	1502	1639	1775
6	761	1856	2019	2183	814	1803	1967	2130
7	888	2165	2356	2547	950	2103	2294	2485
8	1015	2474	2692	2911	1086	2404	2622	2840
9	1142	2784	3029	3274	1221	2704	2950	3195
10	1269	3093	3366	3638	1357	3005	3278	3550
11	1396	3402	3702	4002	1493	3305	3605	3905
12	1523	3712	4039	4366	1628	3606	3933	4260
13	1650	4021	4375	4730	1764	3906	4261	4615
14	1777	4330	4712	5094	1900	4207	4589	4970
15	1903	4639	5048	5457	2036	4507	4916	5325

Çizelge 2: Kuzey ve güney görev yükü paneli soğurulan ısı değeri (radyatör alan sıcaklığı 40 °C)

Çizelge 3' de radyatör sıcaklığının 35°C olması durumda ve yüzey soğurulma katsayısının 0.24 olması durumunda kuzey ve güney görev yükü panelleri tarafından toplam soğurulma ısı değeri (güneş ve elektronik ekipmanlar) yer almaktadır. Kuzey paneli radyatör alanı 1 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 333 W olarak hesaplanmıştır. Kuzey paneli radyatör alanı 15 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 4998 W olarak hesaplanmıştır. Güney paneli radyatör alanı 1 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 324 W olarak hesaplanmıştır. Kuzey paneli radyatör alanı 15 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 4866 W olarak hesaplanmıştır.

	Kuze	y Panel @	2) 35 °C, α	=0.24	Güne	y Panel @	2)35 °C,α	=0.24
Alan	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}
		@ε=0.8	@ε=0.85	@ε=0.9		@ε=0.8	@ε=0.85	@ε=0.9
m²		(V	V)			(V	V)	
1	127	282	308	333	136	273	299	324
2	254	564	615	666	271	547	598	649
3	381	846	923	1000	407	820	897	973
4	508	1128	1231	1333	543	1093	1195	1298
5	634	1411	1538	1666	679	1366	1494	1622
6	761	1693	1846	1999	814	1640	1793	1947
7	888	1975	2154	2333	950	1913	2092	2271
8	1015	2257	2461	2666	1086	2186	2391	2595
9	1142	2539	2769	2999	1221	2460	2690	2920
10	1269	2821	3077	3332	1357	2733	2989	3244
11	1396	3103	3384	3665	1493	3006	3287	3569
12	1523	3385	3692	3999	1628	3280	3586	3893
13	1650	3667	4000	4332	1764	3553	3885	4217
14	1777	3949	4307	4665	1900	3826	4184	4542
15	1903	4232	4615	4998	2036	4099	4483	4866

Çizelge 3: Kuzey ve güney görev yükü paneli soğurulan ısı değeri (radyatör alan sıcaklığı 35 °C)

Çizelge 4' de radyatör sıcaklığının 30°C olması durumda ve yüzey soğurulma katsayısının 0.24 olması durumunda kuzey ve güney görev yükü panelleri tarafından toplam soğurulma ısı değeri(güneş ve elektronik ekipmanlar) yer almaktadır. Kuzey paneli radyatör alanı 1 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 304 W olarak hesaplanmıştır. Kuzey paneli radyatör alanı 15 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 4561 W olarak hesaplanmıştır. Güney paneli radyatör alanı 1 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 295 W olarak hesaplanmıştır. Kuzey paneli radyatör alanı 15 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 295 W olarak hesaplanmıştır. Kuzey paneli radyatör alanı 15 m² ve yüzey yayınlama katsayısı 0.9 için toplam soğurulan ısı 4429 W olarak hesaplanmıştır.

Çizelge 4: Kuzey ve güney görev yükü paneli soğurulan ısı değeri (radyatör alan sıcaklığı 30 °C)

	Kuze	y Panel @	2 30 °C, α	=0.24	Güney Panel @ 30 °C, α=0.24			
Alan	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}	Q _{Solar}	Q _{int}	Q _{int}	Q _{int}
		@ε=0.8	@ε=0.85	@ε=0.9		@ε=0.8	@ε=0.85	@ε=0.9
m²		(V	V)		(W)			
1	127	256	280	304	136	247	271	295
2	254	512	560	608	271	495	543	591
3	381	769	840	912	407	742	814	886
4	508	1025	1121	1216	543	990	1085	1181
5	634	1281	1401	1520	679	1237	1357	1476
6	761	1537	1681	1824	814	1484	1628	1772
7	888	1793	1961	2129	950	1732	1899	2067
8	1015	2050	2241	2433	1086	1979	2171	2362
9	1142	2306	2521	2737	1221	2227	2442	2657
10	1269	2562	2801	3041	1357	2474	2713	2953
11	1396	2818	3082	3345	1493	2721	2985	3248
12	1523	3074	3362	3649	1628	2969	3256	3543
13	1650	3331	3642	3953	1764	3216	3527	3839
14	1777	3587	3922	4257	1900	3463	3799	4134
15	1903	3843	4202	4561	2036	3711	4070	4429

SONUÇ

Bu çalışmada, üç eksenli yeredurağan uydularda radyatör alanları gözönünde bulundurularak ısı atım kapasitesi hesabı yapılmıştır. Isı atımı en düşük olduğu durum, radyatör sıcaklığının 30 °C olması, radyatör panel alanının 1 m² ve yüzey yayınlama katsayısının 0.8 olduğu durumda 383 W olarak hesaplanmıştır. Isı atımı en yüksek olduğu durum, radyatör sıcaklığının 40 °C olması, radyatör panel alanının 15 m² ve yüzey yayınlama katsayısının 0.9 olduğu durumda 7361 W olarak hesaplanmıştır.

Analitik hesaplama sonucu olarak, yüzey yayınlama katsayısı artması ve radyatör sıcaklığının artması ile birlikte atılan ısınında arttığı hesaplamalar ile görülmüştür. Uydularda fazla ısının atılması isteniyorsa seçilecek optik güneş yansıtıcı malzemesinin mümkün olduğunca yüzey yayınlama katsayısı yüksek ve yüzey soğurulma katsayısı düşük olması tercih edilmelidir.

Kaynaklar

Bulut, M., Kahriman, A. ve Sözbir, N., 2010. *Uydularda Isıl Kontrol.*, Termodinamik, Sayı - 209, S.72-78, Ocak 2010.

Cockfield, R.D., 1968. *Structural Optimization of a Space Radiator*, J.Spacecraft Rockets 5 (10), 1240–1241.

Coşkun, H., Bulut, M., ve Sözbir, N., 2016. *Uydularda Optik Güneş Reflektörü ile Isıl Kontrol ve Uygulama Yöntemi.*, VI. Ulusal Havacılık ve Uzay Konferansı , Kocaeli Üniversitesi, Kocaeli, 28-30 Eylül.

Curran D.G.T., ve Lam, T.T., 1996. *Weight Optimization for Honeycomb Radiators with Embedded Heat Pipes.*, Journal of Spacecraft and Rockets 33 (6), 822-828.

Gilmore D.G, Editor, *Spacecraft Thermal Control Handbook Vol. 1:*, 2.Ed., The Aerospace Corporation, CA, USA, 2002.

Hull, P.V., Tinker, M., SanSoucie, M., ve Kittredge, K., 2006. *Thermal Analysis and Shape Optimization for an in-sace radiator using genetic algorithm.* SpaceTechnol. Int. Forum CP813, 81-90.

Karam D.R, Satellite Thermal Control for System Engineers, AIAA, Inc., VA, 1998.

Kim, H., Choi, S., Park, S., ve Lee, K.Ho, 2015. *Node-based Spacecraft Radiator Design Optimization*. Advances in Space Research 55, 1445-1469.

Krikkis, R.N., ve Razelos, P., 2002. *Optimum Design of Spacecraft Radiators with Longitudinal Rectangular and Triangular Fins.*, Journal of Heat Transfer 124, 805-811.

Sözbir, N., Bulut, M., Öktem, M.F., ve Kahriman, A., 2008. *TUSAT Haberleşme Uydusunun Isıl Tasarımı.*, II. Ulusal Havacılık ve Uzay Konferansı, Istanbul, 15-17 Ekim.

Sözbir, N., ve Bulut., 2009. *Türksat Haberleşme Uydusunun Isıl Kontrolü.*, 17. Ulusal Isı Bilimi ve Tekniği Kongresi, Sivas, Türkiye, 24-27 Haziran.